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/—— Importance of loops \

Consider this DFA. The input string 01011 gets
accepted after an execution that goes through
the state sequences = p—-q—=p—-=q—r.
This path contains a loop (corresponding to the
substring 01) that starts and ends at p. There
are two simple ways of modifying this path
without changing its beginning and ending
states:
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/_— Automata and Formal Languages \

(1) delete the loop from the path;

(2) instead of going around the loop once, do it
several times. As a consequence, we see that all
strings of the form 0 (10) 111 (where i = 0) are

accepted.

N

Lecture 8 Tim Sheard

]



/—— Long paths must contain a loop

Suppose n is the number of states of a DFA.
Then every path of length n or more visits
at least n+1 states, and therefore must
visit some state twice. Thus, every path of
length n or longer must contain a loop.

N
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/—— The pumping lemma \

Suppose L is a regular language, w is a string in 1,
and u is a non-empty substrlng of w. Thus,
w=xuy, for some strings x, y . We say that u is
a pump in w if all strings xut (that IS, xy, xuy,
xuuy, xuuuy, ...) belong to L

Pumping Lemma. Let L be a reqular language.
Then there exists a number n, such that for all
w €L such that |w| =n, there exists a prefix
of w whose length is less than n which contains
a pump. Formally: If we L and |w| = n
then w = xyz such that

1.y # € (y is the pump)
2. |xyl=sn (xy is the prefix)
3. xy'z €L

Definition. The number n associated to the

regular language L as described in the Pumping
\ Lemma is called the pumping constant of L. /
5
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Automata and Formal Languages
/—— Proof \

wWEL, |w| =2 n, w=xyz suchthatl.y = ¢ 2. |xy|=sn 3. xy'z €L

Let the DFA have m states. Let | w|=m. Consider the
path from the start state s to the (accepting) state
o(s,w). Just following the first m arcs, we make
m+1 total visits to states, so there must be a loop

formed by some of these arcs.

We can write w= opqr, where p corresponds to that
loop, and | opg| = m (the prefix of size m). Thus

let n=|op|, x=0,y =p, and z = qr.

1) Since every Ioop has at least one arc, we know |p| >0,
thus y = ¢

2) |xyl=n because xy = op and n = |op]|

3) xy'z €L because If p is a loop, its starts at state s; and
d(s,p) = s;, and we know that §(s,gr) = Sgy - ThUS
d(Setartrx) = S; Thus for each i §(s, yv*) = s; and were done.
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ﬁ Proving non-regularity

To prove that a given language is not regular, we use
the Pumping Lemma as follows.

Assuming L is regular (we are arguing by
contradiction!), let n be the pumping constant of L.

what it is exactly), we need to produce a string wel
of length = n that "does not contain a pump in its n-
prefix. This w depends on n; we need to give w for
any value of n.

w and we must demonstrate that none of them is a
pump. Typically, we do this by writing w=xuy, a

we can only assume that u ¢ and |xu|l = n. Then
we must show that for some concrete i (zero or

\ greater) the string xu'y does not belong to L.

Makm% no other assumptlons about n (we don't know
|

There are many substrings of the n-prefix of our chosen

decomposition of w into three substrings about which

~
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- Skill required I

Notice the game-like structure of the proof.
Somebody gives us n. Then we give w of
length = n. Then our opponent gives us a
non-empty substring u of the n-prefix of

w (and with it the factorization w =xuy of
w). Finally, we choose i such that xu'y¢ L.

Our first move often requires ingenuity:
We must find w so that we can
successfully respond to whatever our
opponent plays next.

N
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Automata and Formal Languages
ﬁ Example 1 \

We show that L={0k1% | k=0,1,2, ...} is not regular.
Assuming the Pumping Lemma constant of L is n, we
take w=011n. We need to show that there are no
pumps in the n-prefix of w, which is O". If uis a
pump contained in 0" then 0" = xuz, and xuuz must
also be in the language. But since |u| > 0, if |xuz| =
n then |xuuz| = m where m > n. So we obtain a
string 0m1" with m>n, which is obviously not in L, so
a contradiction is obtamed and are assumption that
OK1K is regular must be false.

Note. The same choice of w and i works to show that
the language:

L={w € {0,1}* | w contains equal humber of Os and 1s}

\ IS not regular either. J
— i 10
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Automata and Formal Languages
ﬁ Example 2 \

We show that L = { uu | u&{a,b}" } is not regular.

Let n be the pumping constant. Then we choose

w=a"ba"b which clearly has length greater than
n.

The initial string a" must contain the pump, u. So
w = xuyba"b, and xuyb = a"b. But pumping u 0
times it must be the case that xyba"b is in L too.
But since u is not ¢, we see that xyb =a"b, since
it must have fewer a’s. Which leads to a
contradiction. Thus our original assumption that
L was regular must be false.

Question. If in response to the given n we play
w=a"a", the opponent has a chance to win. How?

\_ /ﬂ
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Automata and Formal Languages
ﬁ Example 3

The language L = {w &{a,b,c}* | the length of w
is a perfect square} is not regular.

In response to n, we play any string w of length
n? (which clearly has length greater than n). The
opponent picks a pump u such that w = xuy; let
k=|u| and we have

Ixuy| = |xuy| + (i-1) |u| = n? + (i-1)k.

If we can find i such that n2+(i-1)k is not a perfect
square, then we are led to a contradiction. A
good choice is i=kn2+1. In that case

n2+(i-1)k =
n2+(kn?+1 -1)k =
n2+k?2n? =

\ n2(k2+1), which is not a perfect square.
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- Myhill Nerode

The Myhill Nerode theorem is another
characterization of the regular languages

It uses a language to carve up the set of all
strings into equivalence classes

Intuitively these equivalence classes will
correspond to states in a minimal DFA

N
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Automata and Formal Languages
/—— Definition

X and y are distinguishable with respect to L
if there is a z such that either xz is in L
and yzis notin L or xzis notin L and yz
IsinL

in other words

x and y are indistinguishable wrt L if for all
z, xzinLiffyzinL

N
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Automata and Formal Languages
/—— Example \

A = {a,b}
a and b are indistinguishable
epsilon is distinguishable from all other strings

all strings other than epsilon, a and b are
indistinguishable

In other words, there are three equivalence classes
for A: [epsilon], [a], [aa].

The number of equivalence classes induced by a
language is called the index of the language (A is
of index 3)
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ﬁ Homework \

In homework you will show:
indistinguishable by L is an equivalence relation

if Lis recoc_?(nized by a DFA with k states then L has index
at most

If L has finite index k, then it is recognized by a DFA with
k states

L is regular iff it has finite index. The index is the size of
the smallest DFA recognizing L

\_ ,
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Automata and Formal Languages
ﬁ Examples

N
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What is the index of arbn ?
What are the equivalence classes of a*b*?
What is the index of a*b*?
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