
Automata and Formal Languages

Tim Sheard 1Lecture 8

Pumping Lemma &
 Distinguishability

Jim Hook
Tim Sheard

Portland State University



Automata and Formal Languages

Tim Sheard 2Lecture 8

Importance of loops

Consider this DFA. The input string 01011 gets
accepted after an execution that goes through
the state sequence s → p → q → p → q → r.
This path contains a loop (corresponding to the
substring 01) that starts and ends at p. There
are two simple ways of modifying this path
without changing its beginning and ending
states:

s p

q

r

1

1

1

1
0

0

0



Automata and Formal Languages

Tim Sheard 3Lecture 8

 

(1) delete the loop from the path;
(2) instead of going around the loop once, do it

several times. As a consequence, we see that all
strings of the form 0(10)i11 (where i ≥ 0) are
accepted.

s p

q

r

1

1

1

1
0

0

0



Automata and Formal Languages

Tim Sheard 4Lecture 8

Long paths must contain a loop

Suppose n is the number of states of a DFA.
Then every path of length n or more visits
at least n+1 states, and therefore must
visit some state twice. Thus, every path of
length n or longer must contain a loop.



Automata and Formal Languages

Tim Sheard 5Lecture 8

The pumping lemma

Suppose L is a regular language, w is  a string in L,
and u is a non-empty substring of w. Thus,
w=xuy, for some strings x, y . We say that u is
a pump in w if all strings xuiy (that is, xy, xuy,
xuuy, xuuuy, …) belong to L.

Pumping Lemma. Let L be a regular language.
Then there exists a number n, such that for all
w ∈ L such that |w| ≥ n, there exists a prefix
of w whose length is less than n which contains
a pump. Formally: If w ∈ L and |w| ≥  n
then w = xyz such that
1. y ≠ ε                ( y is the pump)
2. |xy|≤ n     (xy is the prefix)
3. xyiz ∈ L

Definition. The number n associated to the
regular language L as described in the Pumping
Lemma is called the pumping constant of L.



Automata and Formal Languages

Tim Sheard 6Lecture 8

Proof

w ∈ L, |w| ≥  n, w = xyz such that 1. y ≠ ε   2.  |xy|≤ n  3. xyiz ∈ L

Let the DFA have m states. Let |w|≥m. Consider the
path from the start state s to the (accepting) state
δ(s,w).  Just following the first m arcs, we make
m+1 total visits to states, so there must be a loop
formed by some of these arcs.

We can write w=opqr, where p corresponds to that
loop, and|opq| = m (the prefix of size m). Thus
let n=|op|, x=o, y = p, and z = qr.
1) Since every loop has at least one arc, we know |p| >0,

thus y ≠ ε
2) |xy|≤ n because xy = op and n = |op|
3) xyiz ∈ L because If p is a loop, its starts at state si and
     δ(si,p) = si, and we know that δ(si,qr) = sfinal.. Thus
     δ(sstart,x) = si, Thus for each i δ(si,yi) = si, and were done.



Automata and Formal Languages

Tim Sheard 7Lecture 8

start qi final
x = p

y = q

z = rs

m steps

r   |  s



Automata and Formal Languages

Tim Sheard 8Lecture 8

Proving non-regularity

To prove that a given language is not regular, we use
the Pumping Lemma as follows.

Assuming L is regular (we are arguing by
contradiction!), let n be the pumping constant of L.
Making no other assumptions about n (we don't know
what it is exactly), we need to produce a string w∈L
of length ≥ n that does not contain a pump in its n-
prefix. This w depends on n; we need to give w for
any value of n.

There are many substrings of the n-prefix of our chosen
w and we must demonstrate that none of them is a
pump. Typically, we do this by writing w=xuy, a
decomposition of w into three substrings about which
we can only assume that u ≠ε  and |xu| ≤ n.   Then
we must show that for some concrete i (zero or
greater) the string xuiy does not belong to L.



Automata and Formal Languages

Tim Sheard 9Lecture 8

Skill required

Notice the game-like structure of the proof.
Somebody gives us n. Then we give w of
length ≥ n. Then our opponent gives us a
non-empty substring u of the n-prefix of
w (and with it the factorization w =xuy of
w). Finally, we choose i such that xuiy∉ L.

Our first move often requires ingenuity:
We must find w so that we can
successfully respond to whatever our
opponent plays next.



Automata and Formal Languages

Tim Sheard 10Lecture 8

Example 1

We show that L={0k1k | k=0,1,2, …} is not regular.
Assuming the Pumping Lemma constant of L is n, we
take w=0n1n. We need to show that there are no
pumps in the n-prefix of w, which is 0n. If u is a
pump  contained in 0n then 0n = xuz, and xuuz must
also be in the language. But since |u| > 0, if |xuz| =
n then |xuuz| = m where m > n. So we obtain a
string 0m1n with m>n, which is obviously not in L, so
a contradiction is obtained, and are assumption that
0K1K is regular must be false.

Note. The same choice of w and i works to show that
the language:

     L={w ∈ {0,1}* | w contains equal number of 0s and 1s}

is not regular either.



Automata and Formal Languages

Tim Sheard 11Lecture 8

Example 2

We show that L = { uu | u∈{a,b}* } is not regular.
Let n be the pumping constant. Then we choose
w=anbanb which clearly has length greater than
n.

 The initial string an must contain the pump, u. So
w = xuybanb, and xuyb = anb. But pumping u 0
times it must be the case that xybanb is in L too.
But since u is not ε, we see that xyb ≠anb, since
it must have fewer a’s. Which leads to a
contradiction. Thus our original assumption that
L was regular must be false.

Question. If in response to the given n we play
w=anan, the opponent has a chance to win. How?



Automata and Formal Languages

Tim Sheard 12Lecture 8

Example 3

The language  L = { w ∈ {a,b,c}* |  the length of w
is a perfect square} is not regular.

In response to n, we play any string w of length
n2 (which clearly has length greater than n). The
opponent picks a pump u such that w = xuy; let
k=|u| and we have

        |xuiy| = |xuy| + (i-1) |u| = n2 + (i-1)k.
If we can find i such that n2+(i-1)k is not a perfect

square, then we are led to a contradiction. A
good choice is i=kn2+1. In that case

      n2+(i-1)k =
      n2+(kn2+1 –1)k =
      n2+k2n2 =
      n2(k2+1), which is not a perfect square.



Automata and Formal Languages

Tim Sheard 13Lecture 8

Distinguishability



Automata and Formal Languages

Tim Sheard 14Lecture 8

Myhill Nerode

The Myhill Nerode theorem is another
characterization of the regular languages

It uses a language to carve up the set of all
strings into equivalence classes

Intuitively these equivalence classes will
correspond to states in a minimal DFA



Automata and Formal Languages

Tim Sheard 15Lecture 8

Definition

x and y are distinguishable with respect to L
if there is a z such that either xz is in L
and yz is not in L or xz is not in L and yz
is in L

in other words
x and y are indistinguishable wrt L if for all

z, xz in L iff yz in L



Automata and Formal Languages

Tim Sheard 16Lecture 8

Example

A = {a,b}
a and b are indistinguishable
epsilon is distinguishable from all other strings
all strings other than epsilon, a and b are

indistinguishable
In other words, there are three equivalence classes

for A:  [epsilon], [a], [aa].
The number of equivalence classes induced by a

language is called the index of the language (A is
of index 3)



Automata and Formal Languages

Tim Sheard 17Lecture 8

Homework

In homework you will show:
indistinguishable by L is an equivalence relation
if L is recognized by a DFA with k states then L has index

at most k
If L has finite index k, then it is recognized by a DFA with

k states
L is regular iff it has finite index.  The index is the size of

the smallest DFA recognizing L



Automata and Formal Languages

Tim Sheard 18Lecture 8

Examples

What is the index of   anbn  ?
What are the equivalence classes of a*b*?
  What is the index of a*b*?


