CS 591: Introduction to Computer Security

Lecture 2: Voting Machine Study Access Control

James Hook
Objectives:

• Review/Discuss Analysis of Diebold machine

• Introduce Access Control
Discussion

• Thompson, Can You Count on Voting Machines?, NY Times, January, 2008
 – Reaction?
 – Conflicts of interest in design and deployment?
 – Conflicts of interest in Testing? How independent?
 – Role of the vendor in operations?
 – How to prove the presence of a transient bug? The absence?
Discussion

• If we can make a good ATM why is it hard to make a good voting machine?
• “You have to be able to convince the loser they lost” ... “Not only must the losing candidate believe in the loss; the public has to believe in it, too.”
Discussion

 – Reaction to the paper?
Discussion Questions

• What was the basic architecture of the voting machine?
• How did FHF steal votes?
• What other attacks did FHF consider?
• How did the viral propagation mechanism work?
Discussion Questions

• Is the analysis credible?
• Is the threat model credible?
• Is this representative of commercial systems today?
• Did Diebold follow best practices?
• Are the FHF results reproducible?
• Did Felton’s lab follow a sound methodology in analyzing the machine?
Discussion Questions

• Having read the analysis of the Diebold machine, are you surprised that Sequoia used a threat of law suit to prevent Felten’s lab from analyzing their machine?

• Having seen this analysis of a fielded commercial system, are you more or less concerned about the discrepancies observed in Union County elections?
Discussion Questions

• Do you like Oregon’s vote by mail system?
• Are Appel’s comments on Minnesota relevant to voting in Oregon?
Case Study

• We will use the FHF paper as a case study

• As we encounter concepts we will attempt to instantiate them in the context of the voting machine domain
Boot Process

• Boot device specified by hardware jumpers (inside box)
 – EPROM
 – on-board flash (default)
 – ext flash

• On Boot:
 – Copy bootloader into RAM; init hardware
 – Scan Removable flash for special files
 • “fboot.nb0” => replace bootloader in on-board flash
 • “nk.bin” => replace OS in on-board flash
 • “EraseFFX.bsq” => erase file system on on-board flash
 – If no special files uncompressed OS image
 – Jump to entry point of OS
Boot (continued)

- On OS start up:
 - run Filesys.exe
 - unpacks registry
 - runs programs in HKEY_LOCAL_MACHINE\Init
 - shell.exe (debug shell)
 - device.exe (Device manager)
 - gwes.exe (graphics and event)
 - taskman.exe (Task Manager)
 - Device.exe mounts file systems
 - \ (root): RAM only
 - \FFX: mount point for on-board flash
 - \Storage Card: mount point for removable flash
Boot (continued)

• Customized taskman.exe
 – Check removable flash
 • explorer.glb => launch windows explorer
 • *.ins => run proprietary scripts
 – (script language has buffer overflow vulnerabilities)
 – used to configure election data
 • default => launch “BallotStation”
 – FFX\Bin\BallotStation.exe
BallotStation

• Four modes: pre-download, pre-election testing, election, post-election
• Mode recorded in election results file
 – \Storage Card\CurrentElection\election.brs
Stealing Votes

- Malicious processes runs in parallel with BallotStation
- Polls election results file every 15 seconds
 - If election mode and new results
 - temporarily suspend Ballot Station
 - steal votes
 - resume Ballot Station
Viral propagation

• Malicious bootloader
 – Infects host by replacing existing bootloader in on-board flash
 – subsequent bootloader updates print appropriate messages but do nothing

• fboot.nb0
 – package contains malicious boot loader
 – and vote stealing software
Access Control Model
Objectives

• Introduce the concept of Access Control
• Relate mechanism to Confidentiality, Integrity and Availability
Articulating Policy

• How do we articulate a security policy?
• How do we provide mechanisms to enforce policy?
• Voting
 – Different individuals in different roles
 • Voter, Poll worker, ...
 – Different actions
 • Vote, define ballot, start and stop election, ...
 – Logical and physical entities
 • Ballot, stored tally, final tally, voting machine, removable flash, on-board flash, ...
Ad hoc policies

• Discuss
 – Only voters should vote
 – Only poll workers should start and start elections
Access Control Matrix Model

- Lampson ‘71, refined by Graham and Denning (‘71, ‘72)
- Concepts
 - **Objects**, the protected entities, \(O \)
 - **Subjects**, the active entities acting on the objects, \(S \)
 - **Rights**, the controlled operations subjects can perform on objects, \(R \)

- **Access Control Matrix**, \(A \), maps Objects and Subjects to sets of Rights
- State: \((S, O, A) \)
Voting: Subjects, Objects, Rights

• Subjects: (Roles)
 – Voter, Poll worker, ...

• Rights: (Actions)
 – Vote, define ballot, start and stop election, ...

• Objects: (Logical and physical entities)
 – Ballot, stored tally, final tally, voting machine, removable flash, on-board flash, ...

• Question: Is every voter a subject? Or is the role of voter a subject? One-person-one-vote?
Exercise

- Sketch Access Control Matrix (ACM) for Voting

	Ballot	Stored Tally	Final Tally	...
Voter	read	increment		
Poll Worker			print	
...				
Questions

• What about modes?
 – Once the election starts the ballot should not change
 – Voters should only vote when the election is happening
Questions

• Levels of abstraction
 – Some objects are physical, some are logical
 – When considering the programming model you now have processes and files (and possibly modes of operation)

• Exercise:
 – Sketch ACMs with processes as subjects and files as objects for voting and post-election modes
Exercise

• Compare the ACMs for files and processes with the original ACM
• Is every operation specified in the original feasible in the refined ACMs?
• Is every feasible operation in the refined ACMs allowed in the original?
Mechanisms

- Policy specifies abstract goals
- Mechanisms are concrete devices, algorithms, or processes that assist in implementing a policy
- For example, passwords are a mechanism that can support an authentication policy
 - Mechanisms are not always perfect!
Access Control Mechanisms

• Most operating systems provide some mechanisms for supporting access control

• Typically:
 – Processes are associated with users (or user identification numbers), which are the subjects
 – Files are objects
 – Rights are: read, write, append, execute, search, ...
Applying the Mechanism

- Can a generic Access Control mechanism help make the Voting machine more trustworthy?
- What about modes?
 - Mode is not part of typical AC mechanisms
 - However rights can be changed
 - A typical right is “own” which in discretionary access control generally allows the subject to change rights
 - Analysis of systems that actively change rights is potentially difficult
Limitations on Mechanisms

• Simple mechanisms are preferred
• All computational mechanisms must be decidable
• In general, useful mechanisms must be computationally cheap
Access Control

• Is Access Control biased to
 – Confidentiality
 – Integrity
 – Availability

• Exercise
 – Develop scenarios in which a confidentiality (integrity, availability) property is expressed using an access control matrix
Model vs. Mechanism

• Earlier I presented the model of the AC Matrix
• Does UNIX implement the full AC Matrix?
 – What key simplifications does UNIX adopt?
 – Why?
• Is the full ACM mechanism a good idea?
 – Is it a good model?
A Good Model

- ACM is a good model because any mechanism of compatible granularity can be described in terms of how it approximates the ACM model.
Next Lecture

• Discussion
 – Tibet
 • NY Times article
 • Nagaraja and Anderson tech report