
10/19/09 13:02!

Confinement

James Hook

CS 491/591: Introduction to
Computer Security�

10/19/09 13:02!

Plan

•  Confinement Problem (Lampson)
•  Isolation

– Virtual Machines
– Sandboxes

•  Covert Channels

10/19/09 13:02!

The Confinement Problem

•  Lampson, “A Note on the Confinement
Problem”, CACM, 1973.
This note explores the problem of confining a

program during its execution so that it
cannot transmit information to any other
program except its caller. A set of examples
attempts to stake out the boundaries of the
problem. Necessary conditions for a solution
are stated and informally justified.

10/19/09 13:02!

Discussion

Problem and Threat

•  “[The Customer] Create(s) a controlled
environment within which another, possibly
untrustworthy program [the service], can be
run safely. ….

•  “…two ways in which the customer may be
injured by the service:
1.  it may not perform as advertised
2.  it may lead, i.e. transmit to its owner the input

data which the customer gives it.”

10/19/09 13:11!

10/19/09 13:02!

Possible Leaks

0. If a service has memory, it can collect data,
wait for its owner to call it, then return the
data

1.  The service may write into a permanent file
2.  The service may create a temporary file
3.  The service may send a message to a

process controlled by its owner [via ipc]
4.  More subtly, the information may be

encoded in the bill rendered for the
service…

10/19/09 13:02!

Possible Leaks (cont)

5. If the system has interlocks which
prevent files from being open for
writing and reading at the same time,
the service can leak data if it is merely
allowed to read files which can be
written by the owner.

10/19/09 13:02!

Leak 5 (cont)

The interlocks allow a file to simulate a shared Boolean

variable which one program can set and the other can’t

Given a procedure open (file, error) which does
goto error if the file is already open, the following
procedures will perform this simulation:

procedure settrue (file);
 begin loop1: open (file, loop1) end;
procedure setfalse (file);
 begin close (file) end;
Boolean procedure value (file);
 begin value : = true;
 open (file, loop2);
 value := false;
 close (file);

 loop2:
 end;

10/19/09 13:02!

Leak 5 (cont)

Using these procedures and three files called data, sendclock, and

receiveclock, a service can send a stream of bits to another
concurrently running program. Referencing the files as though they
were variables of this rather odd kind, then, we can describe the
sequence of events for transmitting a single bit:

sender: data : = bit being sent;
 sendclock : = true

receiver: wait for sendclock = true;
 received bit : = data;
 receive clock : = true;

sender: wait for receive clock = true;
 sendclock : = false;

receiver: wait for sendclock = false;
 receiveclock : = false;

sender: wait for receiveclock = false;

10/19/09 13:06!

Leak 6

6.  By varying its ratio of computing to input/output
or its paging rate, the service can transmit
information which a concurrently running
process can receive by observing the
performance of the system. …

10/19/09 13:06!

One solution

•  Just say no!

•  Total isolation: A confined program shall make

no calls on any other program

•  Impractical

10/19/09 13:06!

Confinement rule

•  Transitivity: If a confined program calls another
program which is not trusted, the called program
must also be confined.

10/19/09 13:06!

Classification of Channels:

•  Storage

•  Legitimate (such as the bill)

•  Covert

–  I.e. those not intended for information transfer at all,
such as the service program’s effect on the system load

•  In which category does Lampson place 5?

10/19/09 13:06!

Mitigation

•  Lampson proposes a mitigation strategy
for 5

•  Confined read makes a copy (this can
be done lazily on a conflicting write)

10/19/09 13:06!

Root Problem:

•  Resource sharing enables covert channels

•  The more our operating systems and

hardware enable efficient resource sharing
the greater the risk of covert channels

10/19/09 13:06!

Lipner’s Comments

•  1975 paper discusses how
confidentiality models and access
control address storage and legitimate
channels

•  Discussion?
•  How does Lipner think BLP fits in?

10/19/09 13:06!

Lipner’s Contribution

•  Identifies time as “A difficult problem”
– “While the storage and legitimate channels

of Lampson can be closed with a minimal
impact on system efficiency, closing the
covert channel seems to impose a direct
and unreasonable performance penalty.”

10/19/09 13:06!

Resources

•  Lampson, A note on the Confinement
Problem, CACM Vol 16, no. 10, October 1973.

–  http://doi.acm.org/10.1145/362375.362389

•  Lipner, A Comment on the Confinement
Problem, Proceedings of the 5th Symposium
on Operating Systems Principles, pp 192
-196 (Nov. 1975)

–  http://doi.acm.org/10.1145/800213.806537

10/19/09 13:06!

Timing Channel: Kocher

•  CRYPTO ‘96: Timing Attacks on
Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems

10/19/09 13:06!

Kocher attack
•  Let s[0] = 1 
For k = 0 upto w - 1 
 If (bit k of x) is 1 then 
 Let R[k] = (s[k] * y) mod n  
 Else  
 Let R[k] = s[k] 
 Let s[k+1] = R[k] * R[k] mod n  
EndFor  
Return R[w-1]

•  Computes R = yx mod n (x is w bits long)!
•  Given multiple observations of y, n and time deduce x!

From bits 0..(b-1) find bit b

10/19/09 13:06!

Timing channel

•  Let s[0] = 1 
For k = 0 upto w - 1 
 If (bit k of x) is 1 then 
 Let R[k] = (s[k] * y) mod n 
 Else  
 Let R[k] = s[k] 
 Let s[k+1] = R[k] * R[k] mod n 
EndFor 
Return R[w-1]

Premise: multiplication mod n takes longer than
the assignment

10/19/09 13:06!

Basic attack:
•  Prework:

–  Study the computation of
•  u * v mod k

–  measure timings for real values (they will probably
not be uniform)

•  Attack
–  Collect data on (y, n, run time)
–  Guess a bit of x (start with bit 0)

•  Use guess of x to calculate predicted runtimes for
algorithm (simulating all intermediate values)

•  If prediction is no better than random guess again
•  If prediction is better than random guess the next bit

10/19/09 13:06!

Isolation

•  Virtual machines
– Emulate computer
– Process cannot access underlying computer

system, anything not part of that computer
system

•  Sandboxing
– Does not emulate computer
– Alters interface between computer, process

Virtual Machines

•  “Third Generation” of Computers
– First introduced in mid-1960’s
– Mainstream in early 1970’s
–  IBM 360/67, Honeywell 6000, etc.

•  Sources:
– Formal requirements for Virtualizable Third

Generation Architectures, Popek and
Goldberg, CACM, vol 17 number 7, July
1974

10/19/09 13:06!

Virtual Machines

•  Original Concept
– VMM (sometimes called a Control Program

or Hypervisor) provided virtualization
• CP-67, VM/370

– Family of simple operating systems ran as
clients of the VM
• Single process DOS/360
• Multi-tasking OS/360
• Time sharing TSS/360, TSO

10/19/09 13:06!

Virtual Machine

•  “A virtual machine is taken to be an efficient,
isolated duplicate of the real machine. …
Virtual Machine Monitor (VMM) … a VMM has
three essential characteristics:
1.  Provides an environment for programs which is

essentially identical with the original machine
2.  Programs run in this environment show at worst

only a minor decrease in speed
3.  The VMM is in complete control of system

resources”
Popek and Goldberg, 1974

10/19/09 13:06!

Criteria

•  Not all attempts at “3rd Generation”
machines succeeded in supporting
Virtualization
– PDP-10 required more emulation

•  Popek and Goldberg articulated
virtualization criteria

10/19/09 13:06!

Definitions

•  Assumptions:
–  The machine has at least two modes: user and supervisor
–  The machine has some kind of fault (trap) mechanism

•  An instruction is privileged if it faults (traps) when
executed in user mode

•  An instruction is sensitive if it reveals hidden state of the
underlying machine (particularly state about state of
privilege)
–  Popek and Goldberg give a more elaborate definition with

two types of sensitivity, control sensitivity and behavior
sensitivity

–  Example: an instruction that reveals the physical address of
a page in virtual memory is behavior sensitive

10/19/09 13:06!

P&G Main Theorem

•  A virtual machine monitor may be
constructed if the set of sensitive
instructions for that computer is a
subset of the privileged instructions

10/19/09 13:06!

Virtualization for Security

•  Schaefer, Gold, Linde and Scheid,
Program confinement in KVM/370,
1977,
http://doi.acm.org/
10.1145/800179.1124633

•  Adapt the VMM to include reference
monitor to protect security critical
resources

10/19/09 13:21!

10/19/09 13:21!

Sandbox

•  Environment in which actions of process are
restricted according to security policy
–  Can add extra security-checking mechanisms to

libraries, kernel
•  Program to be executed is not altered

–  Can modify program or process to be executed
•  Similar to debuggers, profilers that add breakpoints
•  Add code to do extra checks (memory access, etc.) as

program runs (software fault isolation)

10/19/09 13:21!

Example: Limiting Execution

•  Sidewinder
–  Uses type enforcement to confine processes
–  Sandbox built into kernel; site cannot alter it

•  Java VM
–  Restricts set of files that applet can access and hosts to

which applet can connect

10/19/09 13:21!

Additional Resources

•  R. Wahbe, S. Lucco, T. Anderson, and S.
Graham, Efficient Software-based Fault
Isolation,
http://www.cs.cornell.edu/home/jgm/
cs711sp02/sfi.ps.gz

•  Christopher Small, MiSFIT: A Tool for
Constructing Safe Extensible C++ Systems,
http://www.dogfish.org/chris/papers/misfit/
misfit-ieee.ps

10/19/09 13:21!

Virtualization Returns

•  Intel’s Vanderpool architecture brings
Virtual Machines back to the
mainstream

•  Intel Virtualization Paper

–  (Some figures that follow are taken from

the paper)

10/19/09 13:21!

Applications of Virtualization

•  Workload isolation

•  Workload consolidation

•  Workload migration

10/19/09 13:21!

Isolation

10/19/09 13:21!

Consolidation

10/19/09 13:21!

Migration

10/19/09 13:21!

Virtualizing Intel architectures

•  As is, Intel architectures do not meet the two

requirements:

–  Nonfaulting access to privileged state

•  IA-32 has registers that describe and manipulate the “global
descriptor table”

•  These registers can only be set in ring 0

•  They can be queried in any ring without generating a fault

–  This violates rule 2 (all references to sensitive data traps)

•  Software products to virtualize Intel hardware had to

get around this.

–  Vmware and Virtual PC dynamically rewrite binary code!

–  Xen requires source changes (paravirtualization)

10/19/09 13:21!

Intel solutions

•  VT-x, virtualization for IA-32

•  VT-i, virtualization for Itanium

•  Changed architecture to meet the
criteria

10/19/09 13:21!

Ring aliasing and ring
compression

•  Solution is to allow guest to run at
intended privilege level by augmenting
privilege levels.

•  See Figure 2(d).

10/19/09 13:21!

Nonvirtuallized and 0/1/3

•  (a) is typical of x86 operating systems
•  (b) and (c) give two strategies for virtualization in software

10/19/09 13:21!

0/3/3 and VT-x

10/19/09 13:21!

Nonfaulting access to
privileged state

•  Two kinds of changes

– Make access fault to the VM

– Allow nonfaulting access, but to state

under the control of the VMM

10/19/09 13:21!

Dark Side

•  Malware and Virtual Machines
–  SubVirt: Implementing malware with virtual

machines,
–  King, Chen, Wang, Verbowski, Wang, Lorch

–  Describes the construction of a “virtual-machine
based rootkit” and potential defenses.

–  These appear to be detectable
•  Compatibility is not transparency: VMM detection myths and

realities
•  T Garfinkel, K Adams, A Warfield, J Franklin - usenix.org

