CS 591: Introduction to Computer Security

Lecture 4: Bell LaPadula

James Hook

Objectives

- Introduce the Bell LaPadula framework for confidentiality policy
- Discuss realizations of Bell LaPadula

References:

- Bell retrospective
- Anderson Chapter 8 (first edition Chapter 7)
- Bishop Chapter 5

Access Control Policies

- Discretionary Access Control (DAC)
 - An individual user can set allow or deny access to an object
- Mandatory Access Control (MAC)
 - System mechanism controls access
 - User cannot alter that access
- Originator Controlled Access Control (ORCON)
 - Access control set by creator of information
 - Owner (if different) can't alter AC
 - Like copyright

Background

- Clearance levels
 - Top Secret
 - In-depth background check; highly trusted individual
 - Secret
 - Routine background check; trusted individual
 - For Official Use Only/Sensitive
 - No background check, but limited distribution; minimally trusted individuals
 - May be exempt from disclosure
 - Unclassified
 - Unlimited distribution
 - Untrusted individuals

Background

- Clearance levels are only half the story
 - They give a level of trust of the subject
- The "need to know" policy provides an orthogonal structure called compartmentalization
- A category (or compartment) is a designation related to the "need to know" policy
- Examples:

NUC: Nuclear

– EUR: Europe

- ASI: Asia

Categories and Coalitions

- Categories can be critical in complex coalitions
- The US may have two allies that do not wish to share information (perhaps Israel and Saudi Arabia)
- Policy must support:
 - Top Secret, Israel
 - Top Secret, Saudi Arabia
 - Top Secret, Israel and Saudi Arabia
 - (probably very few people in this set)

Classification Systems

- Both notions of classification induce a partial order
 - TS is more trusted that S
 - You can only see information if you are cleared to access all categories that label it
- Mathematicians Bell and LaPadula picked a lattice structure as a natural model for security levels

Partially Ordered Set

- A Set S with relation ≤ (written (S, ≤) is called a partially ordered set if ≤ is
 - Anti-symmetric
 - If $a \le b$ and $b \le a$ then a = b
 - Reflexive
 - For all a in S, $a \le a$
 - Transitive
 - For all a, b, c. $a \le b$ and $b \le c$ implies $a \le c$

Poset examples

- Natural numbers with less than (total order)
- Sets under the subset relation (not a total order)
- Natural numbers ordered by divisibility

Lattice

- Partially ordered set (S, ≤) and two operations:
 - greatest lower bound (glb X)
 - Greatest element less than all elements of set X
 - least upper bound (lub X)
 - Least element greater than all elements of set X
- Every lattice has
 - bottom (glb L) a least element
 - top (lub L) a greatest element

Lattice examples

- Natural numbers in an interval (0 .. n) with less than
 - Also the linear order of clearances(U ≤ FOUO ≤ S ≤ TS)
- The powerset of a set of generators under inclusion
 - E.g. Powerset of security categories {NUC, Crypto, ASI, EUR}
- The divisors of a natural number under divisibility

New lattices from old

- The opposite of a lattice is a lattice
- The product of two lattices is a lattice
- The lattice of security classifications used by Bishop is the product of the lattice of clearances and the lattice of sets generated from the categories (compartments)

Mandatory Access Control

- In a MAC system all documents are assigned labels by a set of rules
- Documents can only be relabeled under defined special circumstances
- Violations of the policy are considered very serious offenses (criminal or treasonous acts)

Bell LaPadula Context

- Pre-Anderson report policy was not to mix data of different classifications on a single system
- Still a good idea if it meets your needs
- Anderson report identified "on-line multi-level secure operation" as a goal of computer security

From Paper to Computers

- How to apply MAC to computers?
- Documents are analogous to objects in Lampson's Access Control model
 - Every object can be labeled with a classification
- Cleared personnel are analogous to subjects
 - Every subject can be labeled with a clearance
- What about processes?

Note on subject labels

- A person is generally cleared "up to" a level
- Cross level communication requires that a person be able to interact below their level of clearance
- Subjects are given two labels:
 - The maximum level
 - The current level
- Current never exceeds maximum
- We will focus on static labelings
 - A subject will not dynamically change their current level

Bell LaPadula

- Task was to propose a theory of multilevel security
 - supported by a mechanism implemented in an Anderson-style reference monitor
 - prevents unwanted information flow

BLP model

- Adapt Lampson ACM
- Characterize system as state machine
- Characterize key actions, such as file system interaction, as transitions
 - Classify actions as
 - observation (reads)
 - alteration (writes)
 - [Aside: How to classify execute?]
- Show that only "safe states" are reachable

Simple Security

- The simple security property
 - The current level of a subject dominates the level of every object that it observes
- This property strongly analogous to paper systems
- It is referred to by the slogan "no read up"

Problem

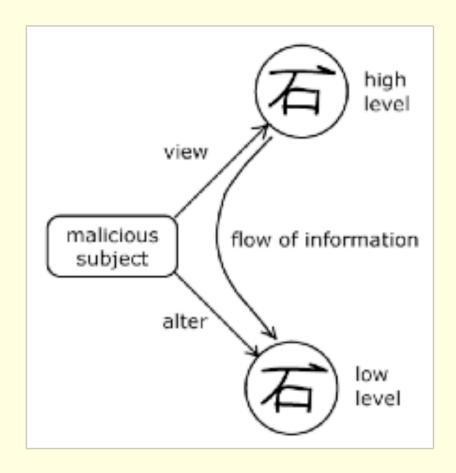


Figure from Bell 2005

Problem

- Simple Security does not account for alterations (writes)
- Another property is needed to characterize alterations

* - Property

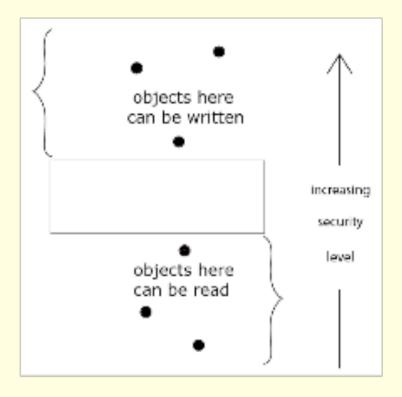


Figure 2. Original *-property

*- Property

- In any state, if a subject has simultaneous "observe" access to object-1 and "alter" access to object-2, then level (object-1) is dominated by level (object-2).
 - From BLP 1976, Unified Exposition
- Slogan: "No write down"

Discretionary

- In addition to the MAC mechanisms of the simple security and *-properties, the BLP model also has a discretionary component
 - All accesses must be allowed by both the MAC and discretionary rules

BLP Basic Security Theorem

- If all transitions (consdiered individually) satisfy
 - simple security property
 - * property
 - discretionary security property
- Then system security is preserved inductively (that is, all states reached from a "secure" state are "secure")

Bell Retrospective

- Note: This presentation and Bishop largely follow "unified exposition"
- How did the *-property evolve?
- Where did current security level come from?

Bell Discussion

- What was the motivating example of a "trusted subject"
 - Explain the concept
 - How must the BLP model be adapted?
- Bell's paper changes mode in Section 5
 - transitions from description of BLP to reflections on impact
 - Will return to these topics periodically

Systems Built on BLP

- BLP was a simple model
- Intent was that it could be enforced by simple mechanisms
- File system access control was the obvious choice
- Multics implemented BLP
- Unix inherited its discretionary AC from Multics

BLP in action

- Bishop describes Data General B2 UNIX system in detail
 - Treatment addresses:
 - Explicit and implicit labeling (applied to removable media)
 - Multilevel directory management
 - Consider challenges of a multilevel /tmp with traditional UNIX compilation tools
 - MAC Regions (intervals of levels)

MAC Regions

A		A&A database, audit	Administrative Region
Hierarchy levels		User data and applications	User Region
VP-1		Site executables	
VP-2		Trusted data	Virus Prevention Region
VP-3		Executables not part of the TCB	
VP-4		Executables part of the TCB	
VP-5		Reserved for future use	
		Categories	

IMPL_HI is "maximum" (least upper bound) of all levels IMPL_LO is "minimum" (greatest lower bound) of all levels Slide from Bishop "05.ppt"

Discussion

 When would you choose to apply a model this restrictive?

Criticisms of Bell LaPadula

- BLP is straightforward, supports formal analysis
- Is it enough?
- McLean wrote a critical paper asserting BLP rules were insufficient

McLean's System Z

- Proposed System Z = BLP + (request for downgrade)
- User L gets file H by first requesting that H be downgraded to L and then doing a legal BLP read
- Proposed fix: tranquility
 - Strong: Labels never change during operation
 - Weak: Labels never change in a manner that would violate a defined policy

Alternatives

- Goguen & Meseguer, 1982: Noninterference
 - Model computation as event systems
 - Interleaved or concurrent computation can produce interleaved traces
 - High actions have no effect on low actions
 - The trace of a "low trace" of a system is the same for all "high processes" that are added to the mix
 - Problem: Needs deterministic traces; does not scale to distributed systems

Nondeducibility

- Sutherland, 1986.
 - Low can not deduce anything about high with 100% certainty
 - Historically important, hopelessly weak
 - Addressed issue of nondeterminism in distributed systems

Intranstitive non-interference

- Rushby, 1992
 - Updates Goguen & Meseguer to deal with the reality that some communication may be authorized (e.g. High can interefere with low if it is mediated by crypto)

Ross Anderson on MLS

- "... the contribution of the MLS model is not all positive. There is a tactical problem, and a strategic one.
- "The tactical problem is that the existence of trusted system components ... has a strong tendency to displace critical thought. ...
- "... MLS systems, by making the classification process easier but controlled data sharing harder, actually impair operational effectiveness."

[Comments at end of 7.6 in first edition]

Looking forward

- Integrity Policies
 - Anderson Chapter 9
 - Brewer and Nash, <u>The Chinese Wall Security Policy</u>, IEEE Symposium on Research in Security and Privacy, May 1989.

Information Warfare

- NY Times, March 29 article on Information Warfare, <u>http://www.nytimes.com/2009/03/29/technology/29spy.html?</u> emc=eta1
- Nagaraja and Anderson, The snooping dragon: social-malware surveillance of the Tibetan movement, University of Cambridge Technical Report,

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-746.html