Assignment 3

Due: October 20th

Problem 1 Prove or disprove the following: Let D be a DFA with $|Q|=k$. If $|L(D)|$ is finite then there exists a string w of length at most $k-1$ such that $w \notin L(D)$.

Problem 2 (Sipser $1.46 \mathrm{a}, \mathrm{c}$) Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class or regular languages under union, intersection, and complement.

1. $\mathrm{A}=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$
2. $\mathrm{B}=\left\{\mathrm{w} \mid w \in\{0,1\}^{*}\right.$ is not a palindrome $\}$
