CS 311: Computational Structures

James Hook

October 23, 2014

8 Chomsky Normal Form and Push Down Automata

8.1 Recall

- Context Free Grammars
- Ambiguity
- Grammar Normal Form (motivation)

8.2 Plan

- Problem Set 3 and Exercise 4 review
- Chomsky Normal Form
- Push Down Automata

8.3 Problem Set 3 and Exercise 4

Any questions? Midterm exam discussion.

8.4 Chomsky Normal Form

Definition 8.1 A Grammar G = (V, T, R, S) is in Chomsky Normal Form if all productions in R are of one of the following three forms:

- 1. $A \rightarrow BC$ where $A, B, C \in V$ and $B, C \neq S$
- 2. $A \rightarrow a$ where $A \in V$ and $a \in T$
- 3. $S \to \epsilon$

In particular, there is no recursion through the sentential symbol S and the only ϵ production allowed is from the sentential symbol.

Theorem 8.2 Any context-free langauge is generated by a context-free grammar in Chomsky Normal Form.

Proof of the theorem is done by giving an algorithm to transform an arbitrary CFG G = (V, T, R, S) to an equivalent grammar in CNF. Steps:

- 1. Augument with new sentential symbol S_0 and new rule $S_0 \to S$.
- 2. Eliminate ϵ -rules.
- 3. Eliminate unit rules.
- 4. Make all rules of proper form.

8.5 Example

Balanced parens to CNF.

8.6 Push Down Automata

Cartoons.

Formal definition. $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Type of δ is $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$. Definition of acceptance. Examples. Variations on PDAs. Set up parsing machine for equivalence.