CS 311: Computational Structures

James Hook

October 15, 2015

6 Pumping Lemma; Closure Properties; Intro to Context Free Languages

6.1 Recall

- Regular Expressions describe exactly the Regular Languages
- Pumping Lemma

6.2 Plan

- Discuss Problem Set 2
- Discuss Exercise 3
- In class exercise
- Pumping Lemma practice
- Using Closure Properties to prove languages are not regular
- Context Free Grammars

6.3 Exercise 3 Follow up

We can say that string w is pumpable for DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ if $w \in L(M)$ (witnessed by state sequence $r_{0}, r_{1}, \ldots, r_{n}$) and there exist x, y, and z such that:

1. The states before and after the string y are the same, so all strings of the form $x y^{i} z \in A$.
2. $|y|>0$, and
3. $|x y| \leq|Q|$

In Exercise 3 you built a "pumpable" string based on the optimal DFA for the modulo 3 counter construction. You also verified that when w is pumpable for M then M accepts $x z$ and $x y y z$. In fact, M accepts $x y^{i} z$ for all i.

In addition to the optimal DFA for congruence to $2 \bmod 3$, there are an infinite number of non-optimal DFAs that accept exactly this language. In this in-class exercise I want you take a string that one of your group members used to correctly answer exercise 3 . Call that string the "target string."

1. Build a non-optimal DFA, M^{\prime}, for the same language that is not pumpable on the target string, w. That is, $L(M)=L\left(M^{\prime}\right)$ but w is not pumpable for M^{\prime}. It may help to design M^{\prime} with more states than $|w|$. Note that what has changed between M and M^{\prime} is the state sequence witnessing acceptance. In M^{\prime} there should be no repitition corresponding to the repitition of states that defined y for M on w.
2. Propose a string that is pumpable for M^{\prime}.
3. Is there any particular string that is always pumpable for this language for any DFA that recognizes it?
4. Can you propose a list of strings that always contains a pumpable string?

Key observations:

1. The decomposition of a string in to x, y, and z is determined by the machine that accepts the string, and not by the language.

6.4 Pumping exercises

Sipser $1.29, \mathrm{a}, \mathrm{b}$. Use the pumping lemma to show the follow are not regular:

1. $A_{1}=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
2. $A_{2}=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$

6.5 Closure Properties

The regular languages are closed under complement. This is easiest to do with DFAs; just complement the set of final states.

The regular languages are closed under intersection. That is, if A and B are regular, so is $A \cap B$. The proof of closure under union for DFAs can be adapted to prove this result.

Use closure properties to show this language is not regular:
Sipser 1.46, b: $\left\{0^{m} 1^{n} \mid m \neq n\right\}$.

