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2 NFA and DFA

2.1 Recall

• Motivation: A language to discuss computation.

• Deterministic Finite Automata (DFA). Given by cartoon or by formal
mathematical structure. Finite number of states. Finite alphabet. State
transition is a total function, with each state and symbol pair mapped to
exactly one new state.

• Definitions of: acceptance, the language recognized by a DFA, the family
of regular languages.

2.2 Plan

• Nondeterministic Finite Automata (NFA). Each state and symbol pair has
a set of successor states (may be none, may be many).

• More NFA Examples

• Simulation of NFA by DFA

• Proof that NFAs represent exactly the Regular Languages.

• Discuss Problem Set 1.

• Regular languages closed under union.

2.3 NFA Examples

Ambiguous substring recognition.
Pattern followed by a pattern.
Lexical analysis motivated examples.
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2.4 Simulation of NFA by DFA

Set up with a cartoon and coins.
Sets of states.
Powerset construction without ε transitions; proof sketch.

2.4.1 Proof of PowerSet construction

Sipser’s construction is exemplary, but the proof asserts that “M obviously
works correctly.” That is a little on the informal side for my taste.

Construction: Given an NFA N = (Q,Σ, δ, q0, F ), construct DFA M =
(P(Q),Σ, δ′, {q0}, F ′) where δ′(R, a) =

⋃
r∈R δ(r, a) and F ′ = {R|R ∩ F 6= ∅}.

Claim 2.1 L(N) = L(M)

To show this we establish we need to be able to show (1) w ∈ L(N)⇒ L(M)
and (2) w ∈ L(M)⇒ L(N).

To show (1), we need to show that when there is a sequence of NFA states
r0, r1, . . . , rn that witness acceptance of w that by N there is a corresponding
sequence of DFA states R0, R1, . . . , Rn that witnesses acceptance of w by M .
To prove that, we need to establish by induction that ri ∈ Ri at every step.

Claim 2.2 If r0, r1, . . . , rk is a sequence of NFA states satisfying conditions (1)
and (2) of the definition of acceptance, then there is a corresponding sequence
of DFA states R0, R1, . . . , Rk also satisfying conditions (1) and (2) such that
for all i ≤ k, ri ∈ Ri.

Proof by induction on k.
Basis. When k = 0 by property (1) we know r1 = q0. By construction,

R0 = {q0}. Clearly q0 ∈ {q0}.
Step. Assume for k to show for k+ 1. Assume w = w′a where a is a symbol

in Σ. Given r0, r1, . . . , rk, rk+1 satisfying (1) and (2) we get R0, R1, . . . , Rk by
induction and rk+1 ∈ δ(rk, a) from (2). By construction, Rk+1 = δ′(Rk, a) =⋃

r∈Rk
δ(r, a). Since rk ∈ Rk, we have δ(rk, a) ⊆ Rk+1. Hence rk+1 ∈ Rk+1 as

required.

Corollary 2.3 If N accepts w then M accepts w.

If N accepts w then by definition of acceptance there is a sequence satisfying
conditions (1), (2), and (3). By Claim 2.2 there is a corresponding sequence for
M with rn ∈ Rn. Since rn ∈ F , Rn∩F 6= ∅, hence Rn ∈ F ′ and thus M accepts
w.

To show (2) we need a similar argument. This time we show that if the DFA
can get from R0 to Rk then the NFA can get to any state s in Rk by a path of
the form r0, r1, . . . , rk.

Claim 2.4 If R0, R1, . . . , Rk is a sequence of DFA states satisfying conditions
(1) and (2) then for every s ∈ Rk there is a sequence r0, r1, . . . , rk where s = rk
and the sequence satisfies conditions (1) and (2).
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Proof by induction on k.
Basis. When k = 0 then r1 = q0 and R1 = {q0} as before.
Step. Assume for k to show for k + 1. Let w be of the form w′a. Given the

sequence R0, R1, . . . , Rk, Rk+1 we get by induction that all s′ ∈ Rk are reachable
by a sequence of states of N . Consider an arbitrary s ∈ Rk+1. By construction
Rk+1 = δ′(Rk, a) =

⋃
r∈Rk

δ(r, a). Hence any s ∈ Rk+1 must be reached from
some NFA state s′ ∈ Rk. Let r0, r1, . . . , rk be the sequence reaching s′, extend
that with rk+1 = s to complete the sequence reaching s. This completes the
proof of the claim.

Corollary 2.5 If M accepts w then N accepts w.

If M accepts w then by definition of acceptance there is a sequence satisfying
conditions (1), (2), and (3). Let s be an element of both Rn and F . By
Claim 2.4 there is a corresponding sequence r0, r1, . . . , rn where rn = s satisfying
conditions (1) and (2). Since s ∈ F this satisfies (3). Hence N accepts w as
required.

2.4.2 ε-closure

Note discussion in text.

2.5 Commentary — Advice to the Reader

As you read the lecture notes, here are some questions that may help you test
your understanding:

1. Make sure you understand the top-level structure of the proof and the
argument. Identify the construction. Compare it to Sipser. Understand
how showing (1) and (2) establishes Claim 2.1. Note the central role of
the definitions of acceptance for NFAs and DFAs in the argument.

2. In showing (1), I formulated Claim 2.2 referring to conditions (1) and (2)
from the definition of acceptance. I was then able to prove Claim 2.2 by
induction. Why did I have to leave out condition (3) in the formation of
Claim 2.2?

3. I conclude the demonstration of (1) by claiming it as Corollary 2.3. This
will be a common pattern where we will combine some facts that we have
from our hypothesis with some properties of the construction that we can
prove by induction to obtain the facts we need for our conclusion. What
goes wrong if you try to prove property 2.3 directly by induction?

4. Note that the paragraph beginning “To show (2) we need a similar ar-
gument” is a very important transition. We are returning to the very
top-level argument for Claim 2.1.
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5. Again Claim 2.4 focuses on conditions (1) and (2) of the definition of
acceptance, omitting (3). Why? Also, it includes this additional “for
every s ∈ Rk”. Why did I have to add that quantified statement? Put
another way, if I had left off this condition, at what point would I have
gotten stuck in the proof of Claim 2.4? How would “getting stuck” in this
manner help me refine the statement of Claim 2.4?

6. The conclusion of (2) is parallel to (1), ending with Corollary 2.5. Explore
the same questions as for Corollary 2.3.

The notes conclude with the very terse: “ε-closure: Note discussion in text.”
Just because it is short, doesn’t mean it isn’t important! I did not discuss ε-
transitions in lecture, but they are very handy and we will use them extensively.
Sipser discusses what ε-transitions are in an NFA and describes how to adapt
the construction to accommodate them. You may want to explore how to adapt
the proof from the lecture notes to the case in which there are ε-transitions.

In arguments like this there are generally some key steps.

• The Construction. This is almost a programming task. It is frequently
the key insight.

• Identify the property or properties that characterize the key invariant
property that is maintained by the construction. In this case, it is the
correspondence between the NFA states (the r0, r1, . . . , rn) and the DFA
states (R0, R1, . . . , Rn).

• Characterize the key invariant property in a manner that you can prove
by induction. This may involve splitting if and only if properties into
pairs of implications. It may also involve generalizing and/or relaxing the
property so that it can be proved by induction. This is frequently the
most technically challenging part of developing a solution. Claims 2.2 and
2.4 illustrate this.

• Wrap it up together in a complete argument, iterating as you identify
gaps.
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