9 PDA to CFG Example

Consider the PDA:

\[
\begin{align*}
\delta(0,\epsilon,\epsilon) &= \{(1,\$)\} +\$ 1 \\
\delta(1,a,\epsilon) &= \{(1,\#)\} +\# 2 \\
\delta(1,b,\#) &= \{(2,\epsilon)\} -\# 3 \\
\delta(2,b,\#) &= \{(2,\epsilon)\} -\# 4 \\
\delta(2,\epsilon,\$) &= \{(3,\epsilon)\} -\$ 5 \\
\end{align*}
\]

In this summary I have indicated if a rule is a “push” of t (+t) or a “pop” of t (−t). I have also numbered each line in the definition of δ for reference.

Recall that the construction introduces rules of the form:

\[
A_{pq} \rightarrow aA_{rs}b
\]

when there is a stack symbol t such that:

\[
(r,t) \in \delta(p,a,\epsilon) \\
(q,\epsilon) \in \delta(s,b,t)
\]

Note that this is exactly when the transition from p to r is labeled +t and the transition from s to q is labeled −t.

Applying this rule to all of δ yields 3 instances. They are:

\[
\begin{align*}
A_{03} &\rightarrow A_{12} + - \$ 1,5 \\
A_{12} &\rightarrow aA_{11}b + - \# 2,3 \\
| &\rightarrow aA_{12}b + - \# 2,4
\end{align*}
\]

Here I have annotated each rule with what symbol is being pushed and popped (+− t) and which lines in the definition of δ are used in the construction.

The grammar is completed by using one instance of the construction that introduces null productions:

\[
A_{11} \rightarrow \epsilon
\]

It is, of course, safe to add all other null productions, but no other null productions contribute to the generation of any strings in the language.