CS 311: Computational Structures

James Hook

October 9, 2014

4 Regular Expressions

4.1 Recall

- Discussion of Closure Properties
 - 1. Complement
 - 2. Reverse
 - 3. Union
 - 4. Concatenation
 - 5. Star
- Brief discussion of Regular Expressions

4.2 Plan

- Discuss Exercise 2
- Regular Expressions
- All language described by regular expressions are regular
- All regular languages are described by regular expressions

4.3 Exercise 2 discussion: Symbols, Strings, and Languages

Unary numbers. How do we add unary numbers (concatenation). How do we represent 0 in unary? This is why we have ϵ !

A symbol is taken from a finite, non-empty set called an *alphabet*.

A string is a finite sequence of symbols. The string of length 0 is written ϵ . A language is a set of strings over a common alphabet.

A machine can be seen to *accept* or *reject* a string. In doing so we say it *recognizes* a language. The language recognized by the machine is the set of strings accepted.

4.4 Regular Expressions

Definition. (Example of inductive)

The atomic regular languages over Σ are:

- 1. afor some $a \in \Sigma$: The language containing exactly the singleton string a.
- 2. ϵ : The language containing exactly the empty string.
- 3. Ø: The language containing no strings.

If R_1 and R_2 are regular expressions, the following composite forms are regular expressions:

- $R_1 \cup R_2$
- $R_1 \circ R_2$
- R_1^*

Examples.

Conventions. $R^+ = R \circ R^*$. Sometimes use + instead of \cup . Sometimes use juxtaposition for concatenation. That is, RS is read formally as $R \circ S$.

Algebra. Explore the analogy:

$$\begin{array}{ccc} 0 & \emptyset \\ 1 & \epsilon \\ + & \cup \\ \times & \circ \end{array}$$

Look at rules for identity, anihilation, distributive laws, associativity, commutativity. What works? What doesn't?

Thm: Every language described by a REGEXP is regular What about the other way?