CS 311: Computational Structures

James Hook

October 2, 2014

2 NFA and DFA

2.1 Recall

- Motivation: A language to discuss computation.
- Deterministic Finite Automata (DFA). Given by cartoon or by formal mathematical structure. Finite number of states. Finite alphabet. State transition is a total function, with each state and symbol pair mapped to exactly one new state.
- Definitions of: acceptance, the language recognized by a DFA, the family of regular languages.
- Nondeterministic Finite Automata (NFA). Each state and symbol pair has a set of successor states (may be none, may be many).

2.2 Plan

- More NFA Examples
- Simulation of NFA by DFA
- Proof that NFAs represent exactly the Regular Languages.
- Discuss Problem Set 1.
- Regular languages closed under union.

2.3 NFA Examples

Ambiguous substring recognition.
Pattern followed by a pattern.
Lexical analysis motivated examples.

2.4 Simulation of NFA by DFA

Set up with a cartoon and coins.
Sets of states.
Powerset construction without ϵ transitions; proof sketch.

2.4.1 Proof of PowerSet construction

Sipser's construction is exemplary, but the proof asserts that " M obviously works correctly." That is a little on the informal side for my taste.

Construction: Given an NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$, construct DFA $M=$ $\left(\mathcal{P}(Q), \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$ where $\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)$ and $F^{\prime}=\{R \mid R \cap F \neq \emptyset\}$.

Claim 2.1 $\mathcal{L}(N)=\mathcal{L}(M)$
To show this we establish we need to be able to show (1) $w \in \mathcal{L}(N) \Rightarrow \mathcal{L}(M)$ and (2) $w \in \mathcal{L}(M) \Rightarrow \mathcal{L}(N)$.

To show (1), we need to show that when there is a sequence of NFA states $r_{1}, r_{2}, \ldots, r_{n}$ that witness acceptance of w that by N there is a corresponding sequence of DFA states $R_{1}, R_{2}, \ldots, R_{n}$ that witnesses acceptancy of w by M. To prove that, we need to establish by induction that $r_{i} \in R_{i}$ at every step.

Claim 2.2 If $r_{0}, r_{1}, \ldots, r_{k}$ is a sequence of NFA states satisfying conditions (1) and (2) of the definition of acceptance, then there is a corresponding sequence of DFA states $R_{0}, R_{1}, \ldots, R_{k}$ also satisfying conditions (1) and (2) such that for all $i \leq k, r_{i} \in R_{i}$.

Proof by induction on k.
Basis. When $k=0$ by property (1) we know $r_{1}=q_{0}$. By construction, $R_{0}=\left\{q_{0}\right\}$. Clearly $q_{0} \in\left\{q_{0}\right\}$.

Step. Assume for k to show for $k+1$. Assume $w=w^{\prime} a$ where a is a symbol in Σ. Given $r_{0}, r_{1}, \ldots, r_{k}, r_{k+1}$ satisfying (1) and (2) we get $R_{0}, R_{1}, \ldots, R_{k}$ by induction and $r_{k+1} \in \delta\left(r_{k}, a\right)$ from (2). By construction, $R_{k+1}=\delta^{\prime}\left(R_{k}, a\right)=$ $\bigcup_{r \in R_{k}} \delta(r, a)$. Since $r_{k} \in R_{k}$, we have $\delta\left(r_{k}, a\right) \subseteq R_{k+1}$. Hence $r_{k+1} \in R_{k+1}$ as required.

Corollary 2.3 If N accepts w then M accepts w.
If N accepts w then by definition of acceptance there is a sequence satisfying conditions (1), (2), and (3). By Claim 2.2 there is a corresponding sequence for M with $r_{n} \in R_{n}$. Since $r_{n} \in F, R_{n} \cap F \neq \emptyset$, hence $R_{n} \in F^{\prime}$ and thus M accepts w.

To show (2) we need a similar argument. This time we show that if the DFA can get from R_{0} to R_{k} then the NFA can get to any state s in R_{k} by a path of the form $r_{0}, r_{1}, \ldots, r_{k}$.

Claim 2.4 If $R_{0}, R_{1}, \ldots, R_{k}$ is a sequence of DFA states satisfying conditions (1) and (2) then for every $s \in R_{k}$ there is a sequence $r_{0}, r_{1}, \ldots, r_{k}$ where $s=r_{k}$ and the sequence satisfies conditions (1) and (2).

Proof by induction on k.
Basis. When $k=0$ then $r_{1}=q_{0}$ and $R_{1}=\left\{q_{0}\right\}$ as before.
Step. Assume for k to show for $k+1$. Let w be of the form $w^{\prime} a$. Given the sequence $R_{0}, R_{1}, \ldots, R_{k}, R_{k+1}$ we get by induction that all $s^{\prime} \in R_{k}$ are reachable by a sequence of states of N. Consider an arbitrary $s \in R_{k+1}$. By construction $R_{k+1}=\delta^{\prime}\left(R_{k}, a\right)=\bigcup_{r \in R_{k}} \delta(r, a)$. Hence any $s \in R_{k+1}$ must be reached from some NFA state $s^{\prime} \in R_{k}$. Let $r_{0}, r_{1}, \ldots, r_{k}$ be the sequence reaching s^{\prime}, extend that with $r_{k+1}=s$ to complete the sequence reaching s. This completes the proof of the claim.

Corollary 2.5 If M accepts w then N accepts w.
If M accepts w then by definition of acceptance there is a sequence satisfying conditions (1), (2), and (3). Let s be an element of both R_{n} and F. By Claim 2.4 there is a corresponding sequence $r_{0}, r_{1}, \ldots, r_{n}$ where $r_{n}=s$ satisfying conditions (1) and (2). Since $s \in F$ this satisfies (3). Hence N accepts w as required.

2.4.2 ϵ-closure

Note discussion in text.

