
Overview and ���
History of���

Operating Systems	

These are the notes for lecture 1.	

Please review the	

“Syllabus” notes	

before these.	

2

Overview / Historical Developments	

An Operating System...	

	

Sits between hardware and users	

	

Provides “environment” to execute programs	

	

Like a government	

	

 	

No useful work	

	

 	

Regulates workers	

	

Manages, allocates resources	

	

 	

CPU (execution time)	

	

 	

Memory Space	

	

 	

Disk / File storage	

	

 	

I/O Devices	

	

Control	

	

 	

Prevent incorrect use of hardware	

	

 	

Security / Protection	

3

Goals	

Make computer easy to use	

Make computer more efficient	

Help user solve problems / do work	

	

 	

Ease of use	

	

 	

Efficiency	

 Often in conflict	

4

Compiler MS Word Web Browser

Operating System

•••

Hardware

Overview	

User User User

5

Early Computers	

	

Input Devices: 	

• Card Reader	

	

Output Devices: 	

• Printer	

	

 	

 	

 	

• Card Puncher	

(No disk, no secondary storage)	

A “job”	

	

User prepares input cards (Program, Data)	

	

User gets time on the machine	

	

 	

Loads the program	

	

 	

Executes it	

	

Study the output and come back tomorrow	

Punch card

6

Early Computers	

The O.S....	

	

(Simply a “control program”)	

• Read cards	

• Load memory	

• Transfer control to user code	

• Print out contents of memory (“core dump”)	

• Loop to next “job”	

7

Batch Operating System	

Read jobs from cards	

Some jobs are “control cards”	

$end,dump

$data
$execute
$load

$compile,fortran

 the source code

 the data

8

New Technology: Magnetic Tape	

Idea: 	

Read cards onto tape	

	

 	

To output a card...	

	

 	

 	

Write to tape & punch it later	

	

 	

 	

Same for printing	

9

New Technology: Magnetic Tape	

Idea: 	

Read cards onto tape	

	

 	

To output a card...	

	

 	

 	

Write to tape & punch it later	

	

 	

 	

Same for printing	

Concept: SPOOLING	

	

• Use tape as a “buffer”.	

	

• Allows I/O from one job to overlap	

	

 	

 the computation from another job!	

(When disks were invented, they were first used like this.)	

10

A Mainframe System (circa 1960)	

IBM	

The	

Mainframe	

Console	

Card Readers	

Tape Drives	

Printers	

“Operator”	

11

New Technology: The Disk	

The first disks were used for spooling.	

	

(The “file” was invented later.)	

Concept: The Job Pool	

Several jobs are waiting to be executed	

	

• One job in memory	

	

• Future jobs sitting on disk	

12

New Technology: The Disk	

The first disks were used for spooling.	

	

(The “file” was invented later.)	

Concept: The Job Pool	

Several jobs are waiting to be executed	

	

• One job in memory	

	

• Future jobs sitting on disk	

The O.S. can make its first decision!	

	

Which job to run next?	

	

 	

 	

First-come, first served	

	

 	

 	

 	

vs.	

	

 	

 	

Job Scheduling	

13

Multi-programming	

Idea: Keep several jobs in memory at once!	

	

 	

When one job waits on I/O...	

	

 	

 	

another jobs can use the CPU!	

Increases CPU utilization	

Don’t keep entire job pool in memory	

	

(just select a few)	

Job X starts I/O...	

	

OS selects another job to run.	

CPU does not sit idle.	

When job X finishes...	

	

OS selects another job from job pool	

	

 	

and loads it into memory.	

14

Main Memory	

	

 	

 0 	

OS Code	

	

 	

 	

 	

Job 1	

	

 	

 	

 	

Job 2	

	

 	

 	

 	

Job 3	

	

 	

 	

 	

Job 4	

	

 	

512K	

15

Main Memory	

Simplest Approach:	

	

• The entire job is laoded into a	

	

 	

contiguous range of memory	

	

• No protection between programs	

	

• A job runs until it requests I/O	

	

 	

No “time-slicing”	

	

 	

If it loops... Oh, well...	

	

• When complete, it transfers back to the OS.	

Memory Management	

	

A big topic (a chapter in textbook)	

Job Scheduling	

	

When job X blocks (due to I/O)...	

	

 	

... which job will be run next?	

	

“Process Management” (chapter 2)	

16

New Concept: Terminals	

Combines with multiprogramming!	

Users want to interact with the programs	

	

while they are executing!	

Initial motivations for interaction:	

	

• Deal with contingencies during job execution.	

	

• Debugging programs.	

	

 	

The good ’ole days...	

	

 	

 	

 • Long turn-around times.	

	

 	

 	

 • Programs were smaller.	

	

 	

 	

 • Written in assembly / FORTRAN.	

	

 	

 	

 • Programmers were very careful.	

	

 	

 	

 • Bugs were intolerable.	

17

Batch Operating Systems	

Each job runs non-stop	

	

(until it decides to perform I/O)	

Problems when used with interactive terminals:	

	

• User response times are...	

	

 	

 	

Long	

	

 	

 	

Unpredictable	

	

• Bugs in one program...	

	

 	

 	

Crash the entire system	

	

 	

 	

Really annoyed people using terminals	

	

 	

 	

(With batch jobs, just restart the programs)	

18

New Concept: Time-Sharing	

“Multi-tasking”	

Goal:	

	

Make it seem like every user has a dedicated computer!	

The Idea:	

	

Switch the CPU rapidly between jobs so that every	

	

running job seems to be making regular progress.	

New hardware support required:	

	

Periodic “timer interrupts”	

	

Ways to protect one program from the other programs.	

Goal: isolate bugs / loops to just that program!	

19

Historical Context	

Each user has a Cathode Ray Tube (CRT) terminal.	

Each user types a command & it is executed.	

“Response time” -- should be < 1 second.	

Many users “online”, sharing the CPU.	

Demonstrated in 1960, common in 1970s.	

Files kept on disks...	

	

 	

but lots of implementation details still visible.	

	

 	

 	

(blocking, file formats, sectors, etc...)	

UNIX (1969, spreading in mid-1970’s)	

20

Time-Sharing	

Several processes in memory.	

Memory management & protection are required.	

If size of user job is really large...	

	

Swap other users’ jobs out to disk (temporarily)	

	

“Virtual Memory”	

	

 	

Don’t load the entire job into memory	

Disk Management:	

	

 	

 	

 	

Directory Structures	

	

 	

 	

 	

Ease-of-use	

	

 	

 	

 	

Protection from other users	

Communication between users:	

	

 	

 	

 	

Still an active area	

	

 	

 	

 	

Synchronization, coordination	

21

Personal Computers	

Began appearing in the 1970s.	

Shift of emphasis:	

	

• Hardware utilization is less important	

	

• Maximize: 	

User convenience	

	

 	

 	

 	

Fast response time	

	

 	

 	

 	

Ease of programming	

	

• Security vs. Communication	

Early opinions: Protection is unimportant	

	

 	

Each person’s computer is separate & isolated.	

22

Trends	

Hardware costs will continue to fall.	

	

OS’s will appear embedded in more devices!	

	

More kinds of OS’s will be needed!	

Computer users will become more sophisticated.	

	

Better OS’s will be demanded!	

Features on research / high-end systems will	

	

 	

become common on small, inexpensive systems.	

	

 	

 	

Parallel processing / multi-processing	

	

 	

 	

Real-time control	

	

 	

 	

Distributed systems	

Programs will become more complex.	

	

The OS will need to promote ease of programming / use!	

More malicious programs will be created.	

	

More security will be needed!	

23

Kinds of Operating Systems	

Personal Computers	

Large, super-computers	

	

Parallel multi-processors	

Embedded computers	

Real-time computers	

Distributed systems	

Highly reliable systems	

Super-low cost	

Research platforms	

	

 	

 Applications	

	

• Chess playing	

	

• Dishwasher / microwave	

	

• Flight control / space shuttle	

	

• Military command	

	

• Automobile control	

	

• Lab / factory automation	

	

• Assembly robot control	

	

• Corporation management	

	

• Web server	

	

• Web search engine	

	

• Nuclear reactor control	

	

• Toys	

	

• Artificial Intelligence	

	

 ... etc ...	

24

Parallel Systems	

Single processor vs. multi-processor systems	

Goals:	

	

• Increase “Throughput”	

	

 	

Get more work done, per hour	

	

• Utilize small, inexpensive processors	

	

 	

... To get more horsepower (giga-flops)	

	

 	

Example: Graphics co-processor	

	

• Save money by sharing expensive peripheral devices.	

	

• Reliability	

	

 	

Graceful degradation	

	

 	

Fault-tolerance	

25

Fault-Tolerance	

Example: Tandem System	

	

Two identical processors	

	

 	

• Primary	

	

 	

• Backup	

	

Each has its own memory	

	

Operating in lock-step	

	

Failure detected?	

	

 	

Backup becomes the primary	

	

 	

“hot backup”	

26

Types of Multiprocessing Systems	

Tightly-Coupled Systems	

	

• Share the system bus	

	

• Share peripheral I/O devices	

	

• Share memory (sometimes)	

	

• Share a common clock (sometimes)	

Example: Graphics Co-processor	

Lossely-Coupled Systems	

27

Types of Tightly-Coupled Systems	

“Symmetric Multiprocessing”	

	

• Each processor runs identical copy of OS	

	

• OS code resides in shared memory	

	

• Shared data structures (for concurrency control)	

“Asymmetric Multiprocessing”	

	

• Master-slave relationship	

	

• One processor assigns tasks to others	

	

• Increased specialization	

	

 	

---> decreased reliability	

	

• Trend: cheap processors	

	

 	

Offload tasks to slaves or back-ends	

	

 	

 	

Graphics processor	

	

 	

 	

Disk processor	

	

 	

 	

Processor in keyboard / mouse	

	

• Communication/interfacing becomes paramount.	

28

Distributed Systems	

Processors do not share	

	

Memory, Clock, System bus, Devices	

“Loosely-coupled systems”	

Communication	

	

 	

Slow (internet) 	

 	

Fast (specialized bus)	

Motivations	

	

Communication & sharing	

	

 	

Email, shared data, group work	

	

Reliability	

	

 	

No single failure should crash the entire system	

	

 	

Data should remain accessible	

	

Computation speed-up	

	

 	

Load-sharing	

	

Recource sharing	

	

 	

Access to specialized or unique hardware 	

29

Real-Time Operating Systems	

Used to control a physical process	

Sensors collect data (“input”?)	

Actuators control the physical process (“output”?)	

	

Examples:	

	

 	

 • Avionics (space shuttle control system)	

	

 	

 • Medical systems (heart monitor)	

	

 	

 • Industrial system (oil refinery)	

	

 	

 • Military (anti-missile laser control)	

	

 	

 • Consumer products (automobile controller)	

The key...	

	

Rigid, well-defined, fixed time contraints	

Time-sharing systems should repond quickly!	

Real-time systems must respond quickly!	

30

Real-Time Operating Systems	

Soft Real-Time Systems	

	

Some processes are given higher “priorities.”	

	

 	

Example: video & music playback	

	

Common in many OS’s.	

	

Adequate for many applications,	

	

 	

... but too risky for some!	

	

Even though response is often fast enough,	

	

 	

it is never guaranteed!	

31

Real-Time Operating Systems	

Hard Real-Time Systems	

	

Guarantees that task will complete by their deadlines.	

	

All potential delays are bounded.	

	

 	

Want to avoid:	

	

 	

 	

• Disks (highly variable latencies) 	

	

 	

 	

• Virtual Memory (complex & unpredictable)	

	

OS tends to be low-level, minimal, close to hardware.	

	

A specialized sub-field of OS.	

