
1

Chapter 6���

(Part 2)	

Deadlock	

2

Deadlock Avoidance	

Detection – “optimistic” approach	

Allocate resources	

“Break” system to fix it	

3

Deadlock Avoidance	

Detection – “optimistic” approach	

Allocate resources	

“Break” system to fix it	

Avoidance – “pessimistic” approach	

Don’t allocate resource if it may lead to deadlock	

If a process requests a resource...	

	

 	

Make it wait until you are sure it’s OK.	

4

Deadlock Avoidance	

Detection – “optimistic” approach	

Allocate resources	

“Break” system to fix it	

Avoidance – “pessimistic” approach	

Don’t allocate resource if it may lead to deadlock	

If a process requests a resource...	

	

 	

Make it wait until you are sure it’s OK.	

Which one to use depends upon the application!	

5

Process-Resource Trajectories	

time	

Process A	

t1	

 t2	

 t3	

 t4	

6

Process-Resource Trajectories	

time	

Process A	

t1	

 t2	

 t3	

 t4	

Requests Printer	

Requests CD-RW	

Releases Printer	

Releases CD-RW	

7

Process-Resource Trajectories	

tim

e	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

8

Process-Resource Trajectories	

tim

e	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

 Requests CD-RW	

Requests Printer	

Releases CD-RW	

Releases Printer	

9

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

10

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Both processes	

hold CD-RW	

11

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Both processes	

hold Printer	

12

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Forbidden	

Zone	

13

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Trajectory showing	

system progress	

14

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

B makes progress,	

A is not running	

15

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

B requests	

the CD-RW	

16

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Request is granted	

17

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

A runs & makes	

a request for printer	

18

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Request is granted;	

A proceeds	

19

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

B runs & requests	

the printer...	

MUST WAIT!	

20

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

A runs & requests	

the CD-RW	

21

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

A...	

 holds printer	

 requests CD-RW	

B...	

 holds CD-RW	

 requests printer	

22

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

A...	

 holds printer	

 requests CD-RW	

B...	

 holds CD-RW	

 requests printer	

DEADLOCK!	

23

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

A danger	

 occurred here.	

Should the OS	

 give A the printer,	

 or make it wait???	

24

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

This area is “unsafe”	

25

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

Within the “unsafe” area,	

 deadlock is inevitable.	

We don’t want to	

enter this area.	

The OS should make	

A wait at this point!	

26

Process-Resource Trajectories	

Pr

oc
es

s B
	

tW	

tX	

tY	

tZ	

Process A	

t1	

 t2	

 t3	

 t4	

tim
e	

time	

B requests the printer,	

B releases CD-RW,	

B releases printer,	

then A runs to completion!	

27

Safe states	

The current state:	

	

“which processes hold which resources”	

A “safe” state:	

	

• No deadlock, and	

	

• There is some scheduling order in which every	

	

 	

process can run to completion even if all of them	

	

 	

suddenly request their maximum number of	

	

 	

units immediately.	

The Banker’s Algorithm:	

	

Goal: Avoid unsafe states!!!	

	

 	

When a process requests more units, 	

	

 	

should the system grant the request or make it wait?	

28

The Banker’s Algorithm	

Assumptions:	

	

• Only one type of resource, with multiple units.	

	

• Processes declare their maximum potential resource	

	

 	

needs ahead of time.	

When a process requests more units	

	

 	

should the system make it wait to ensure safety?	

6
2
5

Example: One resource type with 10 units

3!

How many more this process might need

29

Unsafe states	

6
2
5

10 total resource units

3!

5
2
5

2!

Unsafe!

5
0
5

5
0
5

30

Avoidance Modeling - Multiple Resource Types	

Note: These are the max. possible	

requests, which we assume	

are known ahead of time	

31

Banker’s Algorithm for Multiple Resources	

1)   Look for a row, R, whose unmet resource needs are all
smaller than or equal to A. If such row exists, all the	

	

possible needs for this process could be met right now.	

2) 	

Assume the process of the row chosen requests all the
resources that it needs (which is guaranteed to be possible)
and the terminates. Mark that process as “terminated”
and add all its resources back to the “A” vector.	

Repeat steps 1 and 2, until either all process are marked
terminated, in which case the initial state was safe. If	

	

some processes remain, then initial state was UNSAFE!	

32

Avoidance algorithm	

Max request matrix

33

Avoidance algorithm	

Max request matrix

34

Avoidance algorithm	

Max request matrix

35

Avoidance algorithm	

 2 2 2 0

Max request matrix

36

Avoidance algorithm	

 2 2 2 0

Max request matrix

37

Avoidance algorithm	

 4 2 2 1
 2 2 2 0

Max request matrix

38

Deadlock Avoidance	

Deadlock avoidance is usually impractical because	

you don’t know in advance what resources a

process will need!	

39

Deadlock Avoidance	

Alternative approach: “deadlock prevention”	

Prevent the situation in which deadlock might occur	

	

for all time!	

Attack one of the four conditions that are necessary for
deadlock to be possible.	

Four conditions necessary for deadlock:	

	

• Mutual exclusion condition	

	

• Hold and wait condition	

	

• No preemption condition	

	

• Circular wait condition	

40

Attacking the conditions	

Attacking mutual exclusion?	

• Not really an option for some resource types	

• May work for other types	

Attacking no preemption?	

• Not really an option for some resource types	

• May work for other types	

41

Attacking the conditions	

Attacking hold and wait?	

• Require processes to request all resources	

	

before they begin!	

• Process must know ahead of time	

• Process must tell system its “max potential needs”	

If a process decides it wants more than its initial declared
needs, it must...	

	

 	

• Release all resources	

	

 	

• Give the system a new “max potential needs”	

	

 	

• Resume execution	

Issues:	

	

• Under-allocation of resources	

	

• Resource needs not known in advance	

42

Attacking the conditions	

Attacking circular wait?	

• Number each of the resources	

• Require each process to acquire	

	

 	

lower numbered resources	

	

 	

before higher numbered resources.	

More precisely: A process is not allowed to request a	

	

 	

resource whose number is lower than the	

	

 	

highest numbered resource it currently holds.	

Example:	

	

1. Printer	

	

2. Scanner	

	

3. CD-Rom	

	

4. Plotter	

43

Recall this Example of Deadlock	

Assume that resources are ordered:	

	

1. Resource_1	

	

2. Resource_2	

	

3. ...etc...	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_2)
acquire (resource_1)
use resources 1 & 2
release (resource_1)
release (resource_2)

Thread A:	

 Thread B:	

44

Recall this Example of Deadlock	

Assume that resources are ordered:	

	

1. Resource_1	

	

2. Resource_2	

	

3. ...etc...	

Thread B violates the ordering!	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_2)
acquire (resource_1)
use resources 1 & 2
release (resource_1)
release (resource_2)

Thread A:	

 Thread B:	

45

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

46

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

X < Y	

47

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

X < Y	

Y< Z	

48

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

X < Y	

Y< Z	

Z < X	

49

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

X < Y	

Y< Z	

Z < X	

This is impossible!	

50

Why Does Resource Ordering Work?	

Assume deadlock has occurred.	

Process A	

	

holds X	

	

requests Y	

Process B	

	

holds Y	

	

requests Z	

Process C	

	

holds Z	

	

requests X	

X < Y	

Y< Z	

Z < X	

This is impossible!	

Conclusion:	

 The assumption must	

 have been incorrect	

51

Resource Ordering	

The chief problem:	

	

It is hard to come up with an ordering of the	

	

 	

resources that everyone finds acceptable!	

Still, I believe this is particularly useful within an OS.	

	

1. ProcessControlBlock	

	

2. FileControlBlock	

	

3. Page Frames	

Also, the problem of resources with multiple units	

	

is not addressed.	

