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Chapter 6���

(Part 2)	


Deadlock	
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Detection – “optimistic” approach	

Allocate resources	

“Break” system to fix it	
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Deadlock Avoidance	


Detection – “optimistic” approach	

Allocate resources	

“Break” system to fix it	


Avoidance – “pessimistic” approach	

Don’t allocate resource if it may lead to deadlock	

If a process requests a resource...	

	
 	
Make it wait until you are sure it’s OK.	


Which one to use depends upon the application!	
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Safe states	


The current state:	

	
“which processes hold which resources”	


A “safe” state:	

	
• No deadlock, and	

	
• There is some scheduling order in which every	

	
 	
process can run to completion even if all of them	

	
 	
suddenly request their maximum number of	

	
 	
units immediately.	


The Banker’s Algorithm:	

	
Goal:  Avoid unsafe states!!!	

	
 	
When a process requests more units, 	

	
 	
should the system grant the request or make it wait?	
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The Banker’s Algorithm	

Assumptions:	

	
• Only one type of resource, with multiple units.	

	
• Processes declare their maximum potential resource	

	
 	
needs ahead of time.	


When a process requests more units	

	
 	
should the system make it wait to ensure safety?	


6 
2 
5 

Example: One resource type with 10 units 

3!

How many more this process might need 
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Unsafe states	
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Avoidance Modeling - Multiple Resource Types	


Note: These are the max. possible	

requests, which we assume	

are known ahead of time	
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Banker’s Algorithm for Multiple Resources	


1)   Look for a row, R, whose unmet resource needs are all 
smaller than or equal to A.  If such row exists, all the	

	
possible needs for this process could be met right now.	


2) 	
Assume the process of the row chosen requests all the 
resources that it needs (which is guaranteed to be possible) 
and the terminates.  Mark that process as “terminated” 
and add all its resources back to the “A” vector.	


Repeat steps 1 and 2, until either all process are marked 
terminated, in which case the initial state was safe.  If	

	
some processes remain, then initial state was UNSAFE!	
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Avoidance algorithm	


Max request matrix 
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Avoidance algorithm	
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Avoidance algorithm	
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Avoidance algorithm	
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Max request matrix 
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Deadlock Avoidance	


Deadlock avoidance is usually impractical because	

you don’t know in advance what resources a 

process will need!	
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Deadlock Avoidance	


Alternative approach: “deadlock prevention”	

Prevent the situation in which deadlock might occur	

	
for all time!	


Attack one of the four conditions that are necessary for 
deadlock to be possible.	


Four conditions necessary for deadlock:	


	
• Mutual exclusion condition	


	
• Hold and wait condition	

	
• No preemption condition	


	
• Circular wait condition	
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Attacking the conditions	


Attacking mutual exclusion?	

• Not really an option for some resource types	

• May work for other types	


Attacking no preemption?	

• Not really an option for some resource types	

• May work for other types	
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Attacking the conditions	


Attacking hold and wait?	

• Require processes to request all resources	

	
before they begin!	


• Process must know ahead of time	

• Process must tell system its “max potential needs”	


If a process decides it wants more than its initial declared 
needs, it must...	

	
 	
• Release all resources	

	
 	
• Give the system a new “max potential needs”	

	
 	
• Resume execution	


Issues:	

	
• Under-allocation of resources	

	
• Resource needs not known in advance	
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Attacking the conditions	


Attacking circular wait?	


• Number each of the resources	


• Require each process to acquire	

	
 	
lower numbered resources	

	
 	
before higher numbered resources.	


More precisely: A process is not allowed to request a	

	
 	
resource whose number is lower than the	

	
 	
highest numbered resource it currently holds.	


Example:	

	
1.   Printer	

	
2.   Scanner	

	
3.   CD-Rom	

	
4.   Plotter	
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Recall this Example of Deadlock	


Assume that resources are ordered:	

	
1.  Resource_1	

	
2.  Resource_2	

	
3.  ...etc...	


acquire (resource_1) 
acquire (resource_2) 
use resources 1 & 2 
release (resource_2) 
release (resource_1) 

acquire (resource_2) 
acquire (resource_1) 
use resources 1 & 2 
release (resource_1) 
release (resource_2) 

Thread A:	
 Thread B:	
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Recall this Example of Deadlock	


Assume that resources are ordered:	

	
1.  Resource_1	

	
2.  Resource_2	

	
3.  ...etc...	


Thread B violates the ordering!	


acquire (resource_1) 
acquire (resource_2) 
use resources 1 & 2 
release (resource_2) 
release (resource_1) 

acquire (resource_2) 
acquire (resource_1) 
use resources 1 & 2 
release (resource_1) 
release (resource_2) 

Thread A:	
 Thread B:	
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Why Does Resource Ordering Work?	


Assume deadlock has occurred.	


Process A	

	
holds X	

	
requests Y	


Process B	

	
holds Y	

	
requests Z	


Process C	

	
holds Z	

	
requests X	
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Why Does Resource Ordering Work?	


Assume deadlock has occurred.	


Process A	

	
holds X	

	
requests Y	


Process B	

	
holds Y	

	
requests Z	
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Why Does Resource Ordering Work?	


Assume deadlock has occurred.	


Process A	

	
holds X	

	
requests Y	


Process B	

	
holds Y	

	
requests Z	


Process C	

	
holds Z	

	
requests X	


X < Y	


Y< Z	


Z < X	


This is impossible!	


Conclusion:	

  The assumption must	

  have been incorrect	
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Resource Ordering	


The chief problem:	


	
It is hard to come up with an ordering of the	

	
 	
resources that everyone finds acceptable!	


Still, I believe this is particularly useful within an OS.	


	
1.  ProcessControlBlock	

	
2.  FileControlBlock	

	
3.  Page Frames	


Also, the problem of  resources with multiple units	

	
is not addressed.	



