
1

Chapter 6���

(Part 1)	

Deadlock	

2

Resources and Deadlocks	

Processes need access to resources in order to make progress.	

Examples of Resources:	

• Kernel Data Structures	

	

 	

(ProcessControlBlocks, Threads, OpenFile…)	

• Locks/semaphores to protect critical sections	

• Memory (page frames, buffers, etc.)	

• Files	

• I/O Devices	

	

 	

(printers, ports, tape drives, speaker, etc.)	

3

Resources and Deadlocks	

Scenario:	

	

Process P1...	

	

 	

is holding resource A, and	

	

 	

is requesting resource B	

	

Process P2...	

 	

is holding resource B, and	

	

 	

is requesting resource A	

Both are blocked and remain so …	

	

 	

This is deadlock	

4

Resource Usage Model	

Sequence of events required to use a resource:	

request the resource (e.g., acquire a mutex lock)	

use the resource	

release the resource (e.g., release a mutex lock)	

Must wait if request is denied	

block	

busy wait	

fail with error code	

5

Preemptable vs Nonpreemptable Resources	

Preemptable resources	

Can be taken away from a process with no ill effects	

Nonpreemptable resources	

Once given to the process, can’t be taken back	

Will cause the process to fail if taken away	

“Deadlocks occur when processes are granted exclusive
access to non-preemptable resources and wait when
the resource is not available.”	

6

Definition of Deadlock	

“A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause.”	

Usually the event is:	

	

 	

The release of a currently held resource	

All processes in the set are waiting	

	

... for a resource request to be granted.	

None of the processes can proceed	

	

... so no process can release the resources it holds.	

7

Starvation vs. Deadlock	

Starvation and Deadlock are two different things!	

Deadlock:	

	

• No work is being accomplished for the processes that	

	

 	

are deadlocked, because processes are waiting	

	

 	

for each other. Once present, will not go away!	

Starvation:	

	

• Work (progress) is occurring. However, a particular	

	

 	

set of processes may not be getting any work done	

	

 	

because they cannot obtain the resources they need.	

	

• May only last a short time; may go away.	

Both are probabilistic events & may occur only rarely.	

8

Deadlock Conditions	

A deadlock situation can occur if and only if the following
conditions hold simultaneously...	

Mutual Exclusion Condition	

	

A resource can be assigned to only one process at a
time	

Hold And Wait Condition	

	

Processes can get more than one resource	

No Preemption Condition	

Circular Wait Condition	

	

A cyclic chain of two or more processes (must be
waiting for resource from next one in chain)	

9

Resource acquisition scenarios	

acquire (resource_1)
use resource_1
release (resource_1)

Thread A:	

Example:	

 var r1_mutex: Mutex
 ...
 r1_mutex.Lock()
 Use resource_1	

 r1_mutex.Unlock()

10

Resource acquisition scenarios	

Thread A:	

acquire (resource_1)
use resource_1
release (resource_1)

 Another Example:	

 var r1_sem: Semaphore
 r1_sem.Up()
 ...
 r1_sem.Down()
 Use resource_1	

 r1_sem.Up()

11

Resource acquisition scenarios	

acquire (resource_2)
use resource_2
release (resource_2)

Thread A:	

 Thread B:	

acquire (resource_1)
use resource_1
release (resource_1)

12

Resource acquisition scenarios	

acquire (resource_2)
use resource_2
release (resource_2)

Thread A:	

 Thread B:	

No deadlock can occur here!	

acquire (resource_1)
use resource_1
release (resource_1)

13

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

Thread A:	

 Thread B:	

14

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

Thread A:	

 Thread B:	

No deadlock can occur here!	

15

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
use resources 1
release (resource_1)
acquire (resource_2)
use resources 2
release (resource_2)

acquire (resource_2)
use resources 2
release (resource_2)
acquire (resource_1)
use resources 1
release (resource_1)

Thread A:	

 Thread B:	

16

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
use resources 1
release (resource_1)
acquire (resource_2)
use resources 2
release (resource_2)

acquire (resource_2)
use resources 2
release (resource_2)
acquire (resource_1)
use resources 1
release (resource_1)

Thread A:	

 Thread B:	

No deadlock can occur here!	

17

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_2)
acquire (resource_1)
use resources 1 & 2
release (resource_1)
release (resource_2)

Thread A:	

 Thread B:	

18

Resource Acquisition Scenarios: 2 Resources	

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_2)
acquire (resource_1)
use resources 1 & 2
release (resource_1)
release (resource_2)

Thread A:	

 Thread B:	

Deadlock is possible!	

19

Examples of Deadlock	

• Deadlock occurs within a single application	

	

...Not so bad	

	

 	

Programmer created a situation that deadlocks	

	

 	

Kill the program and move on	

• Deadlock occurs within the OS	

	

...More of a problem	

	

 	

System crashes, or some threads become frozen	

	

 	

Must restart system (i.e., kill every thread)	

20

Other examples of deadlock	

21

Resource Allocation Graphs	

Resource	

R	

A	

Process/Thread	

22

Resource Allocation Graphs	

Resource	

R	

A	

Process/Thread	

“is held by”	

23

Resource Allocation Graphs	

R	

A	

“is requesting”	

S	

Resource	

Process/Thread	

Resource	

24

Resource Allocation Graphs	

R	

A	

 S	

B	

25

Resource Allocation Graphs	

Deadlock	

R	

A	

 S	

B	

26

Resource Allocation Graphs	

Deadlock = a cycle in the graph	

R	

A	

 S	

B	

27

Mulitple Units of a Resource	

Some resources have only one “unit”.	

Only one thread at a time may hold the resource.	

	

Printer	

	

Lock on ProcessTable	

Some resources have several units.	

All units are considered equal; any one will do.	

	

Page Frames	

	

Dice	

A thread requests “k” units of the resource.	

Several requests may be satisfied simultaneously.	

28

Dealing with deadlock	

General strategies	

Ignore the Problem	

Hmm… advantages, disadvantages?	

Detection and Recovery	

Avoidance	

	

 	

through careful resource allocation	

Prevention	

	

 	

by structurally negating one of the four conditions	

29

Deadlock detection (1 unit of each)	

Let the problem happen, then recover	

How do you know it happened?	

Do a depth-first-search on the resource allocation graph	

30

Deadlock detection (1 unit of each)	

Let the problem happen, then recover	

How do you know it happened?	

Do a depth-first-search on the resource allocation graph	

31

Deadlock detection (1 unit of each)	

Let the problem happen, then recover	

How do you know it happened?	

Do a depth-first-search on the resource allocation graph	

32

Deadlock detection (1 unit of each)	

Let the problem happen, then recover	

How do you know it happened?	

Do a depth-first-search on the resource allocation graph	

33

Deadlock detection (1 unit of each)	

Let the problem happen, then recover	

How do you know it happened?	

Do a depth-first-search on the resource allocation graph	

34

Deadlock modeling with multiple resources	

Theorem: If a graph does not contain a cycle then no processes
are deadlocked	

A cycle in a RAG is a necessary condition for deadlock.	

Is the existence of a cycle a sufficient condition?	

35

Deadlock modeling with multiple resources	

Theorem: If a graph does not contain a cycle then no processes
are deadlocked	

A cycle in a RAG is a necessary condition for deadlock.	

Is the existence of a cycle a sufficient condition?	

36

Deadlock Detection (multiple resources)	

skip

37

Example	

skip

38

Deadlock Detection Algorithm 	

1. Look for an unmarked process Pi, for which the ith row of
R is less than or equal to A	

2. If such a process is found, add the i-th row of C to A, mark
the process and go back to step 1	

3. If no such process exists the algorithm terminates	

If all marked, no deadlock!

Is there a sequence of running the processes
such that all the resources will be returned?	

skip

39

Deadlock Detection Algorithm - Example	

skip

40

Deadlock Detection Algorithm - Example	

skip

41

Deadlock Detection Algorithm - Example	

skip

42

Deadlock Detection Algorithm - Example	

 2 2 2 0

skip

43

Deadlock Detection Algorithm - Example	

 2 2 2 0

skip

44

Deadlock Detection Algorithm - Example	

 4 2 2 1
 2 2 2 0

skip

45

Deadlock Detection Algorithm - Example	

 4 2 2 1
 2 2 2 0

No deadlock!

skip

46

Deadlock Detection Issues	

How often should the algorithm run?	

• After every resource request?	

• Periodically?	

• When CPU utilization is low?	

• When we suspect deadlock?	

• When some process/thread has been asleep	

	

 	

 	

for a long time?	

47

Recovery from Deadlock	

What should be done to recover?	

• Abort deadlocked processes and reclaim resources	

• Temporarily reclaim resource, if possible	

• Abort one process at a time until deadlock cycle is

eliminated	

Where to start?	

Low priority processes	

How long process has been executing	

How many resources a process holds	

Batch or interactive	

Number of processes that must be terminated	

48

Other Deadlock Recovery Techniques	

Recovery through rollback	

• Save state periodically	

	

 	

(Take a “checkpoint”)	

	

 	

 	

 	

 	

	

• Need to kill a process?	

	

 	

Start computation again from checkpoint	

• Done for large computation tasks	

