Chapter 3

Memory

Management

Part 3

Outline of Chapter 3

e Basic memory management

e Swapping

e Virtual memory

e Page replacement algorithms

 Modeling page replacement algorithms

e Design issues for paging systems
 Implementation issues in this file
e Segmentation

Local vs. Global Page Replacement

Assume several processes: A, B, C, ...
Some process gets a page fault.

(say, process A)
Choose a page to replace.

Local Page Replacement
Only choose one of A’s pages

Global Page Replacement
Choose any page

Local vs. Global Page Replacement

Example: Process has a page fault...

Age
A0 10 A0 A0
A1 7 A1 A1
A2 b A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
C2 5 C2 C2
C3 6 C3 C3
Original Local Global

Local vs. Global Page Replacement

Assume we have
5,000 frames in memory
10 processes
Idea: Give each process 500 frames

Fairness?
Small processes: do not need all those pages
Large processes: may benefit from even more frames

Idea:
Look at the size of each process
Give them a pro-rated number of frames
With a minimum of (say) 10 frames per process

Page Fault Frequency

Lo A A S B o o o A A A A A A A A A A A i

“If you give a process more pages,
its page fault frequency will decline.”

Page faults/sec

Number of page frames assigned

Page Fault Frequency

Lo A A S B o o o A A A A A A A A A A A i

“If you give a process more pages,
its page fault frequency will decline.”
Too High: Need to give this }

process some more frames!

Too Low: Take some frames
away and give to other processes!

Page faults/sec

Number of page frames assigned 7

Page Fault Frequency

Measure the page fault frequency of each process.
Count the number of faults every second.

May want to consider the past few seconds as well.

Page Fault Frequency

Measure the page fault frequency of each process.
Count the number of faults every second.

May want to consider the past few seconds as well.

Aging:
Keep a running value.
Every second

Count number of page faults
Divide running value by 2
Add in the count for this second

Load Control

Assume:
* The best page replacement algorithm
e Optimal global allocation of page frames

10

Load Control

Assume:
* The best page replacement algorithm
e Optimal global allocation of page frames

Thrashing is still possible!

11

Load Control

Assume:
* The best page replacement algorithm
e Optimal global allocation of page frames

Thrashing is still possible!
* Too many page faults!
* No useful work is getting done!
* Demand for frames is too great!

12

Load Control

Assume:
* The best page replacement algorithm
e Optimal global allocation of page frames

Thrashing is still possible!
* Too many page faults!
* No useful work is getting done!
* Demand for frames is too great!

Solution:
* Get rid of some processes (temporarily).
e Swap them out.
e “Two-level scheduling”

13

Which Page Size is Best?

Smaller Page Sizes...

Advantages
 Less internal fragmentation
On average: half of the last page is wasted
* Working set takes less memory
Less unused program in memory

Disadvantages
* Page tables are larger
 Disk-seek time dominates transfer time
(It takes same time to read large page as small page)

14

Which Page Size is Best?

Let
s = size of average process
e = bytes required for each page table entry
p = size of page, in bytes

s/p = Number of pages per process
es/p = Size of page table

p/2 = space wasted due to internal fragmentation

overhead = se/p + p/2

15

Which Page Size is Best?

Let
s = size of average process
e = bytes required for each page table entry
p = size of page, in bytes

overhead = se/p + p/2
Want to choose p to minimize overhead.
Take derivative w.r.t. p and set to zero
se/p? + 12 = 0

Solving for p...
p = sqrt (2se)

16

Which Page Size is Best?

Let
s = size of average process = 1MB
e = bytes required for each page table entry = 8 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:

17

Which Page Size is Best?

Let
s = size of average process = 1MB
e = bytes required for each page table entry = 8 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:
p = sqrt (2*1MB * 8) =4K

18

Which Page Size is Best?

Let
s = size of average process = SMB
e = bytes required for each page table entry = 4 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:
p = sqrt (2*8MB * 4) =8K

19

Sharing Pages

In a large multiprogramming system...
Many users
Some running the same program at the same time

Goal:
Share pages
Can only share read-only pages (text segment)

20

Sharing Pages

[111

Process
table

roRTeetet

Program Data 1 Data 2

L J
VT
Page tables 2 1

Sharing Pages

In Unix:
A “Fork” syscall
Copy the parent’s virtual address space
... and immediately do an ‘“Exec” syscall
Desired Semantics:
“Data and text segments are copied”

22

Sharing Pages

In Unix:

A “Fork” syscall
Copy the parent’s virtual address space

... and immediately do an ‘“Exec” syscall
Desired Semantics:

“Data and text segments are copied”

Idea: Copy-On-Write

e Share all pages

 Mark all pages “read-only”

* Page Fault:
Is this a ‘“‘data” page?
Copy the page
Mark both copies ‘“‘writable”
Resume execution

23

Paging Daemon

Paging works best if there are plenty of free frames.
If all pages are full of dirty pages...
Must perform 2 disk operations for each page fault

24

Paging Daemon

Paging works best if there are plenty of free frames.
If all pages are full of dirty pages...
Must perform 2 disk operations for each page fault

Page Daemon
* A kernel process
* Wakes up periodically
e Counts the number of free pages
e If too few, run the page replacement algorithm...
* Select a page & write it to disk
 Mark the page as clean
If this page is needed later... then it is still there.
If an empty frame is needed later... this page is evicted. 2 S

New System Calls for Page Management

Goal:
Allow some processes more control over paging!

System calls added to the kernel
Example: A process can request a page before it is needed

Processes can share pages
Allows fast movement of data between processes

Processes can grow
Heap manager
e User-level code
 May request more memory, as needed 2 6

Unix Processes

I 7778
27 o Stack Pages

A A A A A A A A A A i

T

Not allocated to the
virtual address space

y,
Z

%
7
w7
/44
00
w0
V722

vz

* Data Pages

E

}Text Pages 2 7

Unix Processes

A A A A A A A A A A i

I 7778
27 o Stack Pages

T

Not allocated to the
virtual address space

y,
Z

%
7
w7
/44
00

}Text Pages 2 8

r Data Pages

Page Zero: Environment
(Filled in with
arameters to the process)

y

Unix Processes

The stack grows;
Page fault occurs here

7722

74

|

T

~Stack Pages

Not allocated to the
virtual address space

%
7
w7
/44
0000

/004

07727227

y,
Z

E

Yz

* Data Pages

}Text Pages 2 9

Unix Processes

W/////A h
The stack grows; %% ;Stack Pages
% |

Page fault occurs here
A new page is allocated
and process continues

Not allocated to the
virtual address space

y,
Z

V/
D,
7
77777
I,

7222 \ v

7.7 777] (Text Pages 30

* Data Pages

E

Yz

Unix Processes

77 Lsuar

. / / t

The stack grows; s ack Lages
Page fault occurs here GoAANNN

S

A new page is allocated
and process continues

Not allocated to the
> virtual address space

J
Z

V/
D,
7
77777
I,

7222 \ v

7.7 777] (Text Pages 31

* Data Pages

E

Yz

Unix Processes

The heap grows;

7
74
w9700

A

}Stack Pages

S

Not allocated to the

> virtual address space

Page fault occurs here —

%
7
w7
/44
0000

/004

07727227

J
Z

* Data Pages

E

Yz

}Text Pages 3 2

Unix Processes

74
w9700

Stack Pages
A

S

Not allocated to the
> virtual address space

The heap grows;
Page fault occurs here — J
A new page is allocated)

and process continues

V/
D,
7
77777
I,

7222 \ v

7.7 777] (Text Pages 33

* Data Pages

E

Yz

Unix Processes

74
w9700

Stack Pages
A

\

Not allocated to the
virtual address space

The heap grows;

Page fault occurs here

A new page is allocated
and process continues

77
7777
7
T
I,

7222 \ v

7.7 777] (Text Pages 34

Data Pages

| £

Yz

Virtual Memory Implementation

When is the kernel involved?

35

Virtual Memory Implementatlon

When is the kernel involved?
* Process Creation

e Process is scheduled to run

e Page Fault Occurs

e Process Termination

36

Virtual Memory Implementatlon

When is the kernel involved?

e Process Creation
Determine the process size
Create page table

e Process is scheduled to run

e Page Fault Occurs

e Process Termination

37

Virtual Memory Implementation

When is the kernel involved?
e Process Creation
Determine the process size
Create page table
e Process is scheduled to run
MMU is initialized to point to new page table
TLB is flushed

e Page Fault Occurs

e Process Termination

33

Virtual Memory Implementation

When is the kernel involved?
e Process Creation
Determine the process size
Create page table
e Process is scheduled to run
MMU is initialized to point to new page table
TLB is flushed
e Page Fault Occurs
Determine the virtual address causing the problem
Swap the evicted page out & read in the desired page
e Process Termination

39

Virtual Memory Implementation

When is the kernel involved?
e Process Creation
Determine the process size
Create page table
e Process is scheduled to run
MMU is initialized to point to new page table
TLB is flushed
e Page Fault Occurs
Determine the virtual address causing the problem
Swap the evicted page out & read in the desired page
e Process Termination
Release / free all frames

Release / free the page table 4 O

Handling a Page Fault

Hardware traps to kernel
PC and SR are saved on stack
Save rest of registers
Determine the virtual address causing the problem
Check validity of the address; determine which page needed
May need to just Kill the process
Find the frame to use (page replacement algorithm)
Is the target frame dirty? Write it out.
(& schedule other processes)
Read in the desired frame from swapping file.
Update the page tables

(continued) 4 1

Handling a Page Fault

Back up the current instruction
The *‘faulting instruction”
Schedule the faulting process to run again
Return to scheduler
Reload registers
Resume execution

42

Backing the PC Up to Restart an Instruction

aaa

Consider a multi-word instruction.
The instruction makes several memory accesses.

One of them faults.
The value of the PC depends on when the fault occurred.
How can you know what instruction was executing???

MOVE.L #6(A1), 2(A0)

| 16 Bits >
1000 MOVE | Opcode

1002 } First operand
1004 } Second operand 4 3

Solutions

e Lot’s of clever code in the kernel

 Hardware support
Dump internal CPU state into special registers
Make ‘‘hidden” registers accessible to kernel

e Better ISA design

44

Locking Pages in Memory

“Pinning” the Pages
Virtual Memory and I/0 interact

Example:
One process does a Sys_Read
(This process suspends during 1/0)
Another process runs
It has a page fault
Some pages is selected for eviction
The frame selected contains the page involved above!!!

Solution:
Each frame has a flag: ‘Do not evict me”. 4 5

Must always remember to un-pin the page!

Swap Area on Disk

Approach #1:

A process starts up

Assume it has N pages in its virtual address space
A region of the swap area is set aside for the pages
There are N pages in the swap region
The pages are kept in order

For each process, we need to know:

____* Disk address of page 0

 Number of pages in address space

Each page is either...

* In a memory frame

* Stored on disk

46

Approach #1

Main memory Disk

Pages

Swap area
7

S

Page
table

\\mm

Problem

What if the virtual address space grows during execution?

Approach #2
Store the pages in the swap in a random order.

View the swap file as a collection of free ‘“‘swap frames”.

Need to evict a frame from memory?

Find a free *“‘swap frame”’.

Write the page to this place on the disk.

Make a note of where the page is.

Use the page table entry.

Just make sure the valid bit is still zero!

Next time the page is swapped out,

it may be written somewhere else.

43

Approach #2

This picture uses a
separate data structure
to tell where pages are.

But perhaps you can use
the page table entries.

Main memory

Pages
0 3
4 6
Page
table
51
Disk

DN

Disk

O

Swap area

—*T\J(J'I\ll

/4

49

Separation of Policy and Mechanism

Kernel contains
e Code to manipulate the MMU
Machine dependent
e Code to handle page faults
Machine independent

User-level Process
e “External Pager”
Determines policy
 Which page to evict
 When to perform disk I/0O
 How to manage the swap file

Examples: Mach, Minix

50

Separation of Policy and Mechanism

User
space

Kernel
space

3. Request page

Main memory

Disk

weer External
process pager 4. Page
2. Needed arrives
page
1. Page 5. Here
fault Y is page

6. Map
page in

5
5

51

Problem with a Flat Address Space

Example:

A compiler

Address space
allocated to the
parse tree

Virtual address space

Call stack *

Parse tree

Constant table *

Source text f

Symbol table

} Free

Space currently being
used by the parse tree

Symbol table has
bumped into the
source text table

52

Segmentation

Traditional Virtual Address Space
“flat>” address space (1 dimensional)

Segmented Address Space
Program made of several “pieces”
Each segment is like a mini-address space
Addresses within a segment start at zero
The program must always say which segment it means
Addresses:
Segment + Offset
Each segment can grow independently of others

53

Segmented Memory

Lo A A B o o o A A A A A A A A A A A A A A i

Each space grows, shrinks independently!

20K
16K |~ 16K
12K |- 12K 12K =
Symbol
table
8K |- 8K 8K |- Parse
tree
Source
text
4K 4K 4K |-
Constants
oK 0K OK oK
Segment Segment Segment Segment
0 1 2 3

12K

8K

4K

oK

Call
stack

Segment

54

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 2
(5K)

Segment 1
(8K)

Segment O
(4K)

(@)

o ———————> 55

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

Segment 2
(5K)

Segment 3
(8K)

Segment 1
(8K)

Segment 2

//,’,’,’,’//

Segment O
(4K)

Segment 7
(5K)

Segment 0
(4K)

(@)

(b)

56

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

N7

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

Segment 1
(8K)

Segment 2

Segment 3
(8K)

//,’,’,’,’//

Segment 2
5K)

Segment O
(4K)

Segment 7
(5K)

Segment 0

(@)

o ———————> 57

Segment 7
(5K)

(4K)

Segment 0

(b)

(4K)

(c)

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

N7

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

PISH

Segment 1
(8K)

Segment 2

Segment 3
(8K)

Segment 5
4K

2897,

//,’,’,’,’//

Segment 2
5K)

Segment 6
(4K)

Segment O
(4K)

Segment 7
(5K)

Segment 2

//,’,’,’//

Segment 7
(5K)

Segment O

(@)

Time _[I nternal Fragmentation

(4K)

Segment
4K

(b)

Segment 7
(5K)

Segment O

(4K)

(d)

53

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

N7

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

PISH

Segment 1
(8K)

Segment 2

Segment 3
(8K)

Segment 5
4K

2897,

//,’,’,’,’//

Segment 2
5K)

Segment 6
(4K)

Segment O
(4K)

Segment 7
(5K)

Segment 2

//,’,’,’//

Segment 7
(5K)

Segment 0

(@)

Time _[Intemal Fragmentation]_[Compaction

(4K)

Segment

(b)

4K

Segment 7
(5K)

Segment O

(4K)

(d)

§

.

Segment 5
(4K)
Segment 6
(4K)

Segment 2

4Segment 7

/ Segment O

(4K)

Segmenting with Paging (MULTICS)

Each segment is divided up into a pages.
A segment consists of several pages.
Each segment descriptor points to a page table.

~ ~
»~ >

36 bits ——

Page 2 entry

))
¢
))
¢

Page 1 entry

Segment 6 descriptor Page 0 entry

Segment 5 descriptor Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor

))
(414
))
(44

Segment 2 descriptor

Segment 1 descriptor Page 2 entry
Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry

Page table for segment 1

60

Segmenting with Paging (MULTICS)

Each entry in segment table...

18 9 111 3
Main memory address Segment length
of the page table (in pages) /
| A A

Page size:
0 = 1024 words
1 =64 words
0 =segmentis paged __|

1 = segment is not paged

Miscellaneous bits

Protection bits

61

Segmenting with Paging (MULTICS)

Each address is a 34-bit number.

Address within
the segment

N

Segment number Page Offset within
number the page
Word
Descriptor Page frame
Segment Page Cl)ffset
number Descriptor number Page Page

segment table

62

Comparison

Consideration Paging Segmentation
Need the programmer be aware No Yes
that this technique is being used?
How many linear address 1 Many
spaces are there?
Can the total address space Yes Yes
exceed the size of physical
memory?
Can procedures and data be No Yes
distinguished and separately
protected?
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

