
1

Memory
Management

Chapter 3 �

Part 2:�
Page Replacement Algorithms

2

Outline of Chapter 3

• Basic memory management
• Swapping
• Virtual memory
• Page replacement algorithms
• Modeling page replacement algorithms
• Design issues for paging systems
• Implementation issues
• Segmentation

in this file

3

Page Replacement

Assume a normal page table (e.g., BLITZ)
User-program is executing
A PageInvalidFault occurs!
The page needed is not in memory

Select some frame
Remove the page in it
If it has been modified, must write it back to disk
 The “dirty” bit

Look at user process and figure out which page was needed
Read the needed page into this frame
Restart the interrupted process
Retry the same instruction
 May need to manipulate the machine state

4

Page Replacement Algorithms

Which frame to replace?

Algorithms:
• The Optimal Algorithm
• FIFO
• Not Recently Used
• Second Chance
• Clock
• Least Recently Used (LRU)
• Not Frequently Used (NFU)
• Working Set
• WSClock

5

The Optimal Page Replacement Algorithm

Idea:
Select the page that will not be needed for the longest time.

6

The Optimal Page Replacement Algorithm

Idea:
Select the page that will not be needed for the longest time.

Problem:
Can’t know the future of a program
Can’t know when a given page will be needed next
The optimal algorithm is unrealizable

7

The Optimal Page Replacement Algorithm

Idea:
Select the page that will not be needed for the longest time.

Problem:
Can’t know the future of a program
Can’t know when a given page will be needed next
The optimal algorithm is unrealizable

However:
Simulation studies
Run the program once
Generate a log of all memory references
Use the log to simulate
 various page replacement algorithms
Can compare others to “optimal” algorithm

8

The FIFO Page Replacement Algorithm

Always replace the oldest page.
“Replace the page that has been in memory for
the longest time.”

9

The FIFO Page Replacement Algorithm

Always replace the oldest page.
“Replace the page that has been in memory for
the longest time.”

Maintain a linked list of all pages in memory
Keep in order of when they came into memory
The page at the front of the list is oldest
Add new page to end of list

10

The FIFO Page Replacement Algorithm

Always replace the oldest page.
“Replace the page that has been in memory for
the longest time.”

Maintain a linked list of all pages in memory
Keep in order of when they came into memory
The page at the front of the list is oldest
Add new page to end of list

Disadvantage:
The oldest page may be needed again soon
Some page may be important
It will get old, but replacing it
 will cause an immediate Page Fault

11

Page Table: Referenced and Dirty Bits

Each page has a...
Valid Bit - checked when page is read or written
ReadOnly Bit - checked when page is written
 BLITZ calls it a “Writable Bit” (0=readonly)
Referenced Bit - set by MMU when page read / written
Dirty Bit - set when page is written
 Sometimes called “Modified Bit”

12

Page Table: Referenced and Dirty Bits

Each page has a...
Valid Bit - checked when page is read or written
ReadOnly Bit - checked when page is written
 BLITZ calls it a “Writable Bit” (0=readonly)
Referenced Bit - set by MMU when page read / written
Dirty Bit - set when page is written
 Sometimes called “Modified Bit”

This algorithm will use these bits

13

Page Table: Referenced and Dirty Bits

Unfortunately, some hardware has
 only a ReadOnly Bit but no Dirty Bit

Idea:
• Software sets the ReadOnly bit for all pages
• When program tries to update the page...
 A trap occurs
• Software sets the Dirty Bit
 and clears the ReadOnly bit
• Resumes execution of the program

14

The Not Recently Used Page Replacement Alg.

Use the Referenced Bit and the Dirty Bit

Initially, all pages have
Referenced Bit = 0
Dirty Bit = 0

Periodically...
 (e.g. whenever a clock tick (timer interrupt) occurs)
Clear the Referenced Bit

15

The Not Recently Used Page Replacement Alg.

When a page fault occurs...

Categorize each page...
Class 1: Referenced = 0 Dirty = 0
Class 2: Referenced = 0 Dirty = 1
Class 3: Referenced = 1 Dirty = 0
Class 4: Referenced = 1 Dirty = 1

Choose a page from class 1.
If none, choose a page from class 2.
If none, choose a page from class 3.
If none, choose a page from class 4.

16

The Second Chance Page Replacement Alg.

Modification to FIFO
Pages kept in a linked list
Oldest is at the front of the list

Look at the oldest page
If its “referenced bit” is 0...
 Select it for replacement
Else
 It was used recently; don’t want to replace it
 Clear its “referenced bit”
 Move it to the end of the list
 Repeat

Everything was used in last clock tick?
Eventually we will get back to the oldest page
This time, its ref. bit will be 0 and we’ll select it.

17

The Clock Page Replacement Alg.

Same as “second chance” algorithm
Keep the pages in a circular list
Current position

18

The Least Recently Used Algorithm (LRU)

Keep track of when a page is used.
Replace the page that has been used least recently.

19

The Least Recently Used Algorithm (LRU)

Keep track of when a page is used.
Replace the page that has been used least recently.

Implementation #1:
Keep a linked list of all pages
On every memory reference,
 Move that page to the front of the list.
The page at the tail of the list is replaced.

“on every memory reference...”
 Not feasible in software

20

The Least Recently Used Algorithm (LRU)

Keep track of when a page is used.
Replace the page that has been used least recently.

Implementation #2:
MMU maintains a counter
Incremented on every clock cycle
Every time a page table entry is used
 MMU writes the value to the entry
 “timestamp” / “time-of-last-use”
When a page fault occurs
 Software looks through the page table
 Idenitifies the entry with the oldest timestamp

21

The Least Recently Used Algorithm (LRU)

Keep track of when a page is used.
Replace the page that has been used least recently.

Implementation #3:
No hardware support
Maintain a counter in software
One every timer interrupt...
 Increment counter
 Run through the page table
 For every entry that has “ReferencedBit” = 1
 Update its timestamp
 Clear the ReferencedBit
Approximates LRU
If several have oldest time, choose one arbitrarily

22

The Not Frequently Used (NFU) Algorithm

• Associate a counter with each page
• On every timer interrupt, the OS looks at each page.
If the Reference Bit is set...
 Increment that page’s counter & clear the bit.

• The counter approximates how often the page is used.
• For replacement, choose the page with lowest counter.

23

The Not Frequently Used (NFU) Algorithm

• Associate a counter with each page
• On every timer interrupt, the OS looks at each page.
If the Reference Bit is set...
 Increment that page’s counter & clear the bit.

• The counter approximates how often the page is used.
• For replacement, choose the page with lowest counter.

Problem:
Some page may be heavily used
 ---> Its counter is large
The program’s behavior changes
 Now, this page is not used ever again (or only rarely)
This algorithm never forgets!
 This page will never be chosen for replacement!

Aging

Given:
A series of numbers, being produced over time.
 x0, x1, x2, ... , xi (xi is the most recent value)

Goal:
Compute an average value...
 with most recent values getting greater weights.
Really want a “running average”
 T0, T1, T2, ... , Ti
with most recent values getting greater weights.
 a = the weight of current value (0 < a < 1)

Formula:
Ti = (a) xi + (1-a) Ti-1

24

Aging

Given:
 x0, x1, x2, ... , xi

Example:
Let a = ½
 T0 = x0
 T1 = 1/2 x1 + 1/2 x0
 T2 = 1/2 x2 + 1/4 x1 + 1/4 x0
 T3 = 1/2 x3 + 1/4 x2 + 1/8 x1 + 1/8 x0
 T3 = 1/2 x3 + 1/2 (1/2 x2 + 1/4 x1 + 1/4 x0)
 T3 = 1/2 x3 + 1/2 (T2)
 Ti = 1/2 xi + 1/2 (Ti-1)

Formula:
Ti = (a) xi + (1-a) Ti-1 25

Aging

Assume a = ½

 Ti = ½ xi + ½ Ti-1
 Ti = ½ (xi + Ti-1)

This can be computed efficiently!

To divide by two... Just shift right 1 bit.
On each iteration:
 Add in the new value
 Shift everything right 1 bit

26

27

NFU Modification: Aging

• Associate a counter with each page
• On every timer interrupt, the OS looks at each page.
Shift the counter right 1 bit
 (divide its value by 2)
If the Reference Bit is set...
 Set the most-significant bit
 Clear the Referenced Bit.

100000 =32
010000 = 16
001000 = 8
000100 = 4
100010 = 34
111111 = 63

28

Working Set Page Replacement

Demand Paging
Pages are only loaded when accessed
When process begins, all pages marked INVALID

29

Working Set Page Replacement

Demand Paging
Pages are only loaded when accessed
When process begins, all pages marked INVALID

Locality of Reference
Processes tend to use only a small fraction of their pages

30

Working Set Page Replacement

Demand Paging
Pages are only loaded when accessed
When process begins, all pages marked INVALID

Locality of Reference
Processes tend to use only a small fraction of their pages

Working Set
The set of pages a process needs
If working set is in memory, no page faults
What if you can’t get working set into memory?

31

Working Set Page Replacement

Demand Paging
Pages are only loaded when accessed
When process begins, all pages marked INVALID

Locality of Reference
Processes tend to use only a small fraction of their pages

Working Set
The set of pages a process needs
If working set is in memory, no page faults
What if you can’t get working set into memory?

Thrashing
Pages faults every few instructions
No work gets done

32

Working Set Page Replacement

Prepaging
Load pages before they are needed

Main Idea:
Identify the process’s “working set”

How big is the working set?
Look at the last K memory references
As K gets bigger, more pages needed.
In the limit, all pages are needed.

33

Working Set Page Replacement

The size of the working set:

k (the time interval)

34

Working Set Page Replacement

Idea:
Look back over the last T msec of time
Which pages were referenced?
 This is the working set.

Current Virtual Time
Only care about how much CPU time this process has seen.

Implementation
On each timer interrupt, look at each page
Was it referenced?
 Yes: Make a note of Current Virtual Time
If a page has not been used in the last T msec,
 It is not in the working set!
 Evict it; write it out if it is dirty.

35

Working Set Page Replacement

a

36

The WSClock Page Replacement Algorithm

All pages are kept in a circular list.
As pages are added, they go into the ring.
The “clock hand” advances around the ring.
Each entry contains “time of last use”.
Upon a page fault...
If Reference Bit = 1...
 Page is in use now. Do not evict.
 Clear the Referenced Bit.
 Update the “time of last use” field.

37

The WSClock Page Replacement Algorithm

If Reference Bit = 0
If the age of the page is less than T...
 This page is in the working set.
 Advance the hand and keep looking
If the age of the page is greater than T...
 If page is clean
 Reclaim the frame and we are done!
 If page is dirty
 Schedule a write for the page
 Advance the hand and keep looking

38

Summary

39

Modelling Page Replacement

Run a program
Look at all memory references
Don’t need all this data
Look at which pages are accessed
 0000001222333300114444001123444
Eliminate duplicates
 012301401234

Reference String
Use this to evaluate different page replacement algorithms

40

Belady’s Anomaly

If you have more page frames (i.e., more memory)...
You will have fewer page faults, right???

41

Belady’s Anomaly

If you have more page frames (i.e., more memory)...
You will have fewer page faults, right???

Not always!

42

Belady’s Anomaly

If you have more page frames (i.e., more memory)...
You will have fewer page faults, right???

Not always!

Consider FIFO page replacement
Look at this reference string:
012301401234

43

Belady’s Anomaly

If you have more page frames (i.e., more memory)...
You will have fewer page faults, right???

Not always!

Consider FIFO page replacement
Look at this reference string
012301401234

Case 1:
3 frames available --> 9 page faults

Case 2:
4 frames available --> 10 page faults

44

Belady’s Anomaly

FIFO with 3 page frames

45

Belady’s Anomaly

FIFO with 3 page frames

FIFO with 4 page frames

