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Section 4.1: Properties of Binary Relations 

A “binary relation” R over some set A is a subset of A×A. 
If (x,y) ∈ R we sometimes write x R y. 

Example: Let R be the binary relaion “less” (“<”) over N. 
 {(0,1), (0,2), … (1,2), (1,3), … } 
 (4,7) ∈ R 
 Normally, we write: 4 < 7 

Additional Examples: Here are some binary relations over A={0,1,2} 
 Ø   (nothing is related to anything) 
 A×A  (everything is related to everything) 
 eq = {(0,0), (1,1),(2,2)} 
 less = {(0,1),(0,2),(1,2)} 
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Representing Relations with Digraphs (directed graphs) 

Let R = {(a,b), (b,a), (b,c)} over A={a,b,c} 

We can represent R with this graph:  

R: 

   a        b        c 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Reflexive 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Symmetric: 
All edges are 2-way: 
Might as well use 
  undirected edges! 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Symmetric: 
All edges are 2-way: 
Might as well use 
  undirected edges! 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Symmetric: 
All edges are 2-way: 
Might as well use 
  undirected edges! 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Transitive: 
If you can get from 
  x to y, then there 
  is an edge directly 
  from x to y! 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Transitive: 
If you can get from 
  x to y, then there 
  is an edge directly 
  from x to y! 
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Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Irreflexive: 
You won’t see any 
  edges like these! 



Section 4.1 CS340-Discrete Structures Page 11 

Properties of Binary Relations: 

R is reflexive 
 x R x for all x∈A 
 Every element is related to itself. 

R is symmetric 
 x R y implies y R x, for all x,y∈A 
 The relation is reversable. 

R is transitive 
 x R y and y R z implies x R z, for all x,y,z∈A 
 Example: 
  i<7 and 7<j implies i<j. 

R is irreflexive 
 (x,x) ∉ R, for all x∈A 
 Elements aren’t related to themselves. 

R is antisymmetric 
 x R y and y R x implies that x=y, for all x,y,z∈A 
 Example: i≤7 and 7≤i implies i=7. 

a b 

c d 

Antisymmetric: 
You won’t see any 
  edges like these! 
  (although xRx is 
  okay: 

x          ) 
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Properties of Binary Relations: 

R is reflexive   x R x for all x∈A 
R is symmetric   x R y implies y R x, for all x,y∈A 
R is transitive   x R y and y R z implies x R z, for all x,y,z∈A 
R is irreflexive   (x,x) ∉ R, for all x∈A 
R is antisymmetric  x R y and y R x implies that x=y, for all x,y,z∈A 

Examples: Here are some binary relations over A={0,1}. 
 Which of the properties hold? 

        Answers: 
 Ø          
 A×A         
 eq = {(0,0), (1,1)}     
 less = {(0,1)}       
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Properties of Binary Relations: 

R is reflexive   x R x for all x∈A 
R is symmetric   x R y implies y R x, for all x,y∈A 
R is transitive   x R y and y R z implies x R z, for all x,y,z∈A 
R is irreflexive   (x,x) ∉ R, for all x∈A 
R is antisymmetric  x R y and y R x implies that x=y, for all x,y,z∈A 

Examples: Here are some binary relations over A={0,1}. 
 Which of the properties hold? 

        Answers: 
 Ø        symmetric,transitive,irreflexive,antisymmetric 
 A×A       reflexive, symmetric, transitive 
 eq = {(0,0), (1,1)}   reflexive, symmetric, transitive, antisymmetric 
 less = {(0,1)}     transitive, irreflexive, antisymmetric 
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Composition of Relations 

If R and S are binary relations, then the composition of R and S is 
 R ᐤ S = {(x,z) | x R y and y S z for some y } 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

R S 

A 
B 

C 
D 

R S 
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Composition of Relations 

If R and S are binary relations, then the composition of R and S is 
 R ᐤ S = {(x,z) | x R y and y S z for some y } 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

R S 

A 
B 

C 
D 

R S 
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Composition of Relations 

If R and S are binary relations, then the composition of R and S is 
 R ᐤ S = {(x,z) | x R y and y S z for some y } 

Examples: 
 eq ᐤ less = ? 
    

 R ᐤ Ø = ? 

 isMotherOf ᐤ isFatherOf = ? 
    

 isSonOf ᐤ isSiblingOf = ? 
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Composition of Relations 

If R and S are binary relations, then the composition of R and S is 
 R ᐤ S = {(x,z) | x R y and y S z for some y } 

Examples: 
 eq ᐤ less = less 
  { (x,z) | x=y and y<x, for some y} 

 R ᐤ Ø = Ø 

 isMotherOf ᐤ isFatherOf = isPaternalGrandmotherOf 
  { (x,z) | x isMotherOf y and y isFatherOf x, for some y} 

 isSonOf ᐤ isSiblingOf = isNephewOf 
  { (x,z) | x isSonOf y and y isSiblingOf x, for some y} 
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Representing Relations with Digraphs (directed graphs) 

Let R = {(a,b), (b,a),(b,c)} over A={a,b,c} 

Let R2 = R ᐤ R = ? 

We can represent R graphically:  

R: 

   a        b        c 
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Representing Relations with Digraphs (directed graphs) 

Let R = {(a,b), (b,a),(b,c)} over A={a,b,c} 

Let R2 = R ᐤ R 
Let R3 = R ᐤ R ᐤ R = ? 

We can represent R graphically:  

R: 

   a        b        c 

R2: 

   a        b        c 
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Representing Relations with Digraphs (directed graphs) 

Let R = {(a,b), (b,a),(b,c)} over A={a,b,c} 

Let R2 = R ᐤ R 
Let R3 = R ᐤ R ᐤ R = R2 ᐤ R. 

We can represent R graphically:  

In this example, R3 happens to be the same relation as R. 
 R3 = R 

Note: By definition, R0 = Eq, where x Eq y iff x=y. 

R: 

   a        b        c 

R2: 

   a        b        c 

R3: 

   a        b        c 
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Reflexive Closure 

Given a relation R, we want to add to it just enough “edges” to make 
 the resulting relation satisfy the reflexive property. 

Reflexive Closure of R is r(R) = R ∪ Eq, where Eq is the equality relation. 

Example: 

r(R) = R ∪ Eq = {(a,b),(b,a),(b,c),(a,a),(b,b),(c,c)} 

R: 

   a        b        c 

r(R): 

        a             b             c 
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Symmetric Closure 

Given a relation R, we want to add to it just enough “edges” to make 
 the resulting relation satisfy the symmetric property. 

Symmetric Closure of R is s(R) = R ∪ Rc, where Rc is the converse 
relation. Rc = {(b,a) | a R b} 

Example: 

s(R) = R ∪ Rc = {(a,b),(b,a),(b,c),(c,b)} 

R: 

   a        b        c 

s(R): 

        a          b         c 
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Transitive Closure 

Given a relation R, we want to add to it just enough “edges” to make 
 the resulting relation satisfy the transitivity property. 

Transitive Closure of R is t(R) = R ∪ R2 ∪ R3 ∪ … 

Note: If the number of nodes is finite… 
 If |A| = n then t(R) = R ∪ R2 ∪ R3 ∪ … ∪ Rn 

Example: 

t(R) = R ∪ R2 ∪ R3 = {(a,b),(b,a),(b,c),(a,a),(b,b),(a,c)} 

If there is a path from x to y, then add an edge directly from x to y. 

R: 

   a        b        c 

t(R): 

        a             b             c 
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In-Class Quiz: 

Let R = {(x,x+1) | x∈Z } 

What is t(R)?     
What is rt(R)?     
What is st(R)?     
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In-Class Quiz: 

Let R = {(x,x+1) | x∈Z } 

What is t(R)?   < 
What is rt(R)?     
What is st(R)?     
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In-Class Quiz: 

Let R = {(x,x+1) | x∈Z } 

What is t(R)?   < 
What is rt(R)?   ≤ 
What is st(R)?     
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In-Class Quiz: 

Let R = {(x,x+1) | x∈Z } 

What is t(R)?   < 
What is rt(R)?   ≤ 
What is st(R)?   ≠ 
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Adjacency Matrix 

Idea: Use a matrix to represent a directed graph (or a relation). 

 Let R = {(a,b),(b,c),(c,d)} 

Number the elements in the set: 1,2,3,… 

 a   b   c   d 
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Adjacency Matrix 

Idea: Use a matrix to represent a directed graph (or a relation). 

 Let R = {(a,b),(b,c),(c,d)} 

Number the elements in the set: 1,2,3,… 

 a   b   c   d 

 1   2   3   4 
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Adjacency Matrix 

Idea: Use a matrix to represent a directed graph (or a relation). 

 Let R = {(a,b),(b,c),(c,d)} 

Number the elements in the set: 1,2,3,… 

 Now we can write R = {(1,2),(2,3),(3,4)} 

The matrix M will have a “1” in position Mij if i R j, and “0” otherwise. 

M  =  0  1  0  0 
  0  0  1  0 
  0  0  0  1 
  0  0  0  0  1   2   3   4 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge:  i   k   j 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge: 

Consider all ways to bypass node 1. 
Then forget about node 1. 
Consider all ways to bypass node 2. 
and so on… 

 i   k   j 

 1  2 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge: 

Consider all ways to bypass node 1. 
Then forget about node 1. 
Consider all ways to bypass node 2. 
and so on… 

 i   k   j 

 1  2 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge: 

Consider all ways to bypass node 1. 
Then forget about node 1. 
Consider all ways to bypass node 2. 
and so on… 

 i   k   j 

 1  2 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge: 

Consider all ways to bypass node 1. 
Then forget about node 1. 
Consider all ways to bypass node 2. 
and so on… 

 i   k   j 

 1  2 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Computing the Transitive Closure: Warshall’s Algorithm 

We can use this matrix to compute the t(R), the transitive closure of R. 

Idea: Every time we find this pattern: 

 …add this edge: 

Consider all ways to bypass node 1. 
Then forget about node 1. 
Consider all ways to bypass node 2. 
and so on… 

 i   k   j 

 1  2 

Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Example: 

k=1 
 1   2   3   4 

M  = 

0  1  0  0 
0  0  1  0 
0  0  0  1 
0  0  0  0 Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Example: 

k=2 
 1   2   3   4 

M  = 

0  1  1  0 
0  0  1  0 
0  0  0  1 
0  0  0  0 Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Example: 

k=3 
 1   2   3   4 

M  = 

0  1  1  1 
0  0  1  0 
0  0  0  1 
0  0  0  0 Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Example: 

k=3 
 1   2   3   4 

M  = 

0  1  1  1 
0  0  1  1 
0  0  0  1 
0  0  0  0 Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Example: 

k=4  …Done; 
  no more changes.  1   2   3   4 

M  = 

0  1  1  1 
0  0  1  1 
0  0  0  1 
0  0  0  0 Warshall’s Algorithm 

  for k := 1 to n 
      for i := 1 to n 
          for j := 1 to n 
              if Mik = Mkj = 1 then 
                    Mij := 1 
              endIf 
          endFor 
      endFor 
  endFor 
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Path Problems: Floyd’s Algorithm 
 Consider a directed graph with weights on the edges. 

Problems: 
 Find the cheapest path from x to y. 

  Find the shortest path from x to y. 
   (Just make all weights = 1!) 

1 

2 

3 

4 
5 

6 

10 

30 30 

10 

5 

40 

10 

20 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Path Problems: Floyd’s Algorithm 
 Consider a directed graph with weights on the edges. 

    

   Idea: 
 Represent the graph with a matrix. 
 Store the weights. 
 For non-existent edges, use 
  a weight of ∞. 
 Then modify Warshall’s Algorithm. 

1 

2 

3 

4 
5 

6 

10 

30 30 

10 

5 

40 

10 

20 

M  = 

0  10  10  ∞  20  10     
∞   0  ∞  30  ∞  ∞ 
∞  ∞  0  30  ∞  ∞ 
∞  ∞  ∞  0  ∞  ∞ 
∞  ∞  ∞  40  0  ∞ 
∞  ∞  ∞  ∞  5  0 



Section 4.1 CS340-Discrete Structures Page 44 

Path Problems: Floyd’s Algorithm 
 Consider a directed graph with weights on the edges. 

Floyd’s Algorithm: 

   for k := 1 to n 
      for i := 1 to n 
         for j := 1 to n 
            if Mik+Mkj < Mij 
               Mij := Mik+Mkj 

            endIf 
         endFor 
      endFor 
   endFor 

1 

2 

3 

4 
5 

6 

10 

30 30 

10 

5 

40 

10 

20 

M  = 

0  10  10  ∞  20  10     
∞   0  ∞  30  ∞  ∞ 
∞  ∞  0  30  ∞  ∞ 
∞  ∞  ∞  0  ∞  ∞ 
∞  ∞  ∞  40  0  ∞ 
∞  ∞  ∞  ∞  5  0 
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Path Problems: Floyd’s Algorithm 
 Consider a directed graph with weights on the edges. 

Floyd’s Algorithm: 

   for k := 1 to n 
      for i := 1 to n 
         for j := 1 to n 
            if Mik+Mkj < Mij 
               Mij := Mik+Mkj 

            endIf 
         endFor 
      endFor 
   endFor 

1 

2 

3 

4 
5 

6 

10 

30 30 

10 

5 

40 

10 

20 

40 

45 

15 

M  = 

0  10  10  40  15  10     
∞   0  ∞  30  ∞  ∞ 
∞  ∞  0  30  ∞  ∞ 
∞  ∞  ∞  0  ∞  ∞ 
∞  ∞  ∞  40  0  ∞ 
∞  ∞  ∞  45  5  0 
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Path Problems: Floyd’s Algorithm 
 How can we remember the best path? P=next node in best path! 

Floyd’s Algorithm: 

   for k := 1 to n 
      for i := 1 to n 
         for j := 1 to n 
            if Mik+Mkj < Mij 
               Mij := Mik+Mkj 
               Pij := k 
            endIf 
         endFor 
      endFor 
   endFor 

1 

2 

3 

4 
5 

6 

10 

30 30 

10 

5 

40 

10 

20 

40 

45 

15 

M  = P  = 

0  0  0  2  6  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  5  0  0 

0  10  10  40  15  10     
∞   0  ∞  30  ∞  ∞ 
∞  ∞  0  30  ∞  ∞ 
∞  ∞  ∞  0  ∞  ∞ 
∞  ∞  ∞  40  0  ∞ 
∞  ∞  ∞  45  5  0 


