Section 4.1: Properties of Binary Relations

A “binary relation” R over some set A is a subset of AxXA.
If (x,y) € R we sometimes write X R y.

Example: Let R be the binary relaion “less” (*<”) over IN.
{(0,1), (0,2), ... (1,2), (1,3), ... }
(4,7) € R
Normally, we write: 4 < 7

Additional Examples: Here are some binary relations over A={0,1,2}
1) (nothing is related to anything)
AxA  (everything is related to everything)

eq = {(0,0), (1,1),(2,2)}
less = {(0,1),(0,2),(1,2)}
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Representing Relations with Digraphs (directed graphs)
Let R = {(a,b), (b,a), (b,c)} over A={a,b,c}

We can represent R with this graph:

R:
/7 N\

a b——>cC

"~
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Properties of Binary Relations:

R is reflexive
X R x for all xeA
Every element is related to itself.
R is symmetric
X Ry implies y R x, for all x,yeA
The relation is reversable.
R is transitive
X Ry and y R z implies x R z, for all x,y,z€A
Example:
i<7 and 7<j implies i<j.
R is irreflexive
(x,x) € R, for all xeA
Elements aren’t related to themselves.
R is antisymmetric
X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.
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Properties of Binary Relations:

4 )
R is reflexive Q’ Q
a b

X R x for all xeA
Every element is related to itself.
R is symmetric

C
x Ry implies y R x, for all x,yeA ® @ d
The relation is reversable. k ( !) U /

R is transitive

X Ry and y R z implies x R z, for all x,y,z€A
Example:
i<7 and 7<j implies i<j.
R is irreflexive
(x,x) € R, for all xeA
Elements aren’t related to themselves.
R is antisymmetric
X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.
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Properties of Binary Relations:

R is reflexive Q'/ 9.
x R x for all xeA a&~—b
Every element is related to itself.
R is symmetric
'S Symmeric C o o d
X Ry implies y R x, for all x,yeA -~
The relation is reversable.
R is transitive K /

X Ry and y R z implies x R z, for all x,y,z€A Symmetric:

Example: ) :
i<7 and 7<j implies i<j. Qlilg?\?:gaessvigﬁ ﬁs\/evay.

R is irreflexive _
(x,x) &R, for all x€A undirected edges!
Elements aren’t related to themselves.

R is antisymmetric
X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.
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Properties of Binary Relations:

4 )
R is reflexive Q’(___).

X R x for all xeA a b
Every element is related to itself.
R is symmetric C
X Ry implies y R x, for all x,yeA o< ’@ d
The relation is reversable.
R is transitive K /

X Ry and y R z implies x R z, for all x,y,z€A Symmetric:

Example: ) :
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Properties of Binary Relations:

4 N
R is reflexive Q—.

X R x for all xeA a b
Every element is related to itself.
R is symmetric
X Ry implies y R x, for all x,yeA
The relation is reversable.
R is transitive K /

X Ry and y R z implies x R z, for all x,y,z€A Symmetric:

Example: ) :
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Properties of Binary Relations: / \

R is reflexive ®
X R x for all xeA a b
Every element is related to itself. l

R is symmetric C
X Ry implies y R x, for all x,yeA o< ®d
The relation is reversable.

R is transitive K /
X Ry and y R z implies x R z, for all x,y,z€A Transitive:

Example:
i<7 and 7<j implies i<j. I you can get from

R is irreflexive X to y, then _there
(x,x) &R, for all xeA is an edge directly
Elements aren’t related to themselves. from x to y!

R is antisymmetric
X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.

—e
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Properties of Binary Relations: / \

R is reflexive ® PS
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Properties of Binary Relations:

4 )
R is reflexive Q Q
a b

X R x for all xeA
Every element is related to itself.
R is symmetric C
X Ry implies y R x, for all x,yeA ® ®d
The relation is reversable. (_5 (_5
R is transitive K /
X Ry and y R z implies x R z, for all x,y,z€A Irreflexive:

Example: /
. . L You won't see an
i<7 and 7<j implies i<j. edges like thesey'

R is irreflexive
(x,x) € R, for all xeA
Elements aren’t related to themselves.
R is antisymmetric
X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.
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Properties of Binary Relations: / \

R is reflexive ./ >\.
x R x for all xeA atS~—b
Every element is related to itself.
R is symmetric
e Co~ e d
X Ry implies y R x, for all x,yeA -~
The relation is reversable.
R is transitive K /

X Ry and y R z implies x R z, for all x,y,z€A Antisymmetric:

Example: /
. . L You won't see an
i<7 and 7<j implies i<j. edges like thesey'

R is irreflexive

(x,X) & R, for all xeA (although xRx is
Elements aren’t related to themselves. okay: ( Q
R is antisymmetric e )

X Ry and y R x implies that x=y, for all x,y,z€A
Example: i<7 and 7<i implies i=7.
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Properties of Binary Relations:

R is reflexive X R x for all xeA

R is symmetric X Ry implies y R x, for all x,yeA

R is transitive X Ry andy R z implies x R z, for all x,y,z€A
R is irreflexive (x,x) € R, for all xeA

R is antisymmetric x Ry and y R x implies that x=y, for all x,y,z€A

Examples: Here are some binary relations over A={0,1}.
Which of the properties hold?

Answers:

%)
AxXA

eq = {(0,0), (1,1)}
less = {(0,1)}
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Properties of Binary Relations:

R is reflexive X R x for all xeA

R is symmetric X Ry implies y R x, for all x,yeA

R is transitive X Ry andy R z implies x R z, for all x,y,z€A
R is irreflexive (x,x) € R, for all xeA

R is antisymmetric x Ry and y R x implies that x=y, for all x,y,z€A

Examples: Here are some binary relations over A={0,1}.
Which of the properties hold?

Answers:
1) symmetric,transitive,irreflexive,antisymmetric
AxA reflexive, symmetric, transitive
eq = {(0,0), (1,1)} reflexive, symmetric, transitive, antisymmetric
less = {(0,1)} transitive, irreflexive, antisymmetric
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Composition of Relations

If R and S are binary relations, then the composition of R and S is
ReS={{(x,z) | xRyandy S zforsomey }
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Composition of Relations

If R and S are binary relations, then the composition of R and S is
ReS={{(x,z) | xRyandy S zforsomey }

4 N
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Composition of Relations

If R and S are binary relations, then the composition of R and S is
ReS={{(x,z) | xRyandy S zforsomey }

Examples:

eqoless =7

Ro@ =7

isMotherOf o isFatherOf = ?

isSonOf o isSiblingOf = ?
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Composition of Relations

If R and S are binary relations, then the composition of R and S is
ReS={{(x,z) | xRyandy S zforsomey }

Examples:
eq o less = less
{ (X,z) | x=y and y<x, for some y}

Re@=0

isMotherOf o isFatherOf = isPaternalGrandmotherOf
{ (x,z) | x isMotherOf y and y isFatherOf x, for some y}

isSonOf o isSiblingOf = isNephewOf
{ (X,z) | x isSonOf y and y isSiblingOf x, for some y}
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Representing Relations with Digraphs (directed graphs)
Let R = {(a,b), (b,a),(b,c)} over A={a,b,c}

Let R2=RoR =7

We can represent R graphically:

()
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Representing Relations with Digraphs (directed graphs)

Let R = {(a,b), (b,a),(b,c)} over A={a,b,c}

Let R2
Let R3

RoR
RoRoR =7

We can represent R graphically:

()

RZ:Q @

a

\/

C
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Representing Relations with Digraphs (directed graphs)
Let R = {(a,b), (b,a),(b,c)} over A={a,b,c}

Let RZ2 = RoR
Let R3=RoRoR =R20R,

We can represent R graphically:

R: R2: R3:
™ (2 (2 .

a b——>cC a b C

In this example, R3 happens to be the same relation as R.
R3 =R

Note: By definition, R% = Eq, where x Eq vy iff x=y.
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Reflexive Closure

Given a relation R, we want to add to it just enough “edges” to make
the resulting relation satisfy the reflexive property.

Reflexive Closure of Ris r(R) = R U EqQ, where Eq is the equality relation.

Example:

r(R) = R U Eq = {(a,b),(b,a),(b,c),(a,a),(b,b),(c,c)}
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Symmetric Closure

Given a relation R, we want to add to it just enough “edges” to make
the resulting relation satisfy the symmetric property.

Symmetric Closure of R is s(R) = R U R¢, where R€is the converse
relation. R® = {(b,a) | a R b}

Example:

s(R) = R U R® = {(a,b),(b,a),(b,c),(c,b)}

R: s(R):
7 N\ W
a b——>cC a b C
" _ ~__“~
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Transitive Closure

Given a relation R, we want to add to it just enough “edges” to make
the resulting relation satisfy the transitivity property.

Transitive Closure of Ris t(R) = R U R2 U R3 U ...

Note: If the number of nodes is finite...
If |JAl =nthent(R)=RUR2UR3U..UR"

Example:

t(R) = R U R? U R3 = {(a,b),(b,a),(b,c),(a,a),(b,b),(a,c)}

If there is a path from x to v, then add an edge directly from x to v.
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In-Class Quiz:

Let R = {(x,x+1) | Xx€Z }
What is t(R)?

What is rt(R)?
What is st(R)?
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Let R = {(x,x+1) | Xx€Z }
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In-Class Quiz:

Let R = {(x,x+1) | Xx€Z }
What is t(R)? <
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In-Class Quiz:

Let R = {(x,x+1) | Xx€Z }

What is t(R)?
What is rt(R)?
What is st(R)?

H* IAA
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Adjacency Matrix
Idea: Use a matrix to represent a directed graph (or a relation).
Let R = {(a,b),(b,c),(c,d)}

Number the elements in the set: 1,2,3,...
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Adjacency Matrix
Idea: Use a matrix to represent a directed graph (or a relation).
Let R = {(a,b),(b,c),(c,d)}

Number the elements in the set: 1,2,3,...

CS340-Discrete Structures Section 4.1 Page 29



Adjacency Matrix
Idea: Use a matrix to represent a directed graph (or a relation).
Let R = {(a,b),(b,c),(c,d)}
Number the elements in the set: 1,2,3,...
Now we can write R = {(1,2),(2,3),(3,4)}
The matrix M will have a "1” in position M;; if i R j, and "0” otherwise.

M =

OO0 Oo
oo+
oo O
O~ OO
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| > K > ]

...add this edge:

Warshall’s Algorithm

endFor
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| > K > ]

...add this edge:

Warshall’s Algorithm

Consider all ways to bypass node 1.
Then forget about node 1.

Consider all ways to bypass node 2.
and so on...

AN
N endFor
./ N T
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| > K > ]

...add this edge:

Warshall’s Algorithm

Consider all ways to bypass node 1.
Then forget about node 1.

Consider all ways to bypass node 2.
and so on...

N st
./\ endFor
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| > K > ]

...add this edge:

Warshall’s Algorithm

Consider all ways to bypass node 1.
Then forget about node 1.

Consider all ways to bypass node 2.
and so on...

/Z\. endFor
®
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| >K > ]

...add this edge:

Warshall’s Algorithm

Consider all ways to bypass node 1.
Then forget about node 1.

Consider all ways to bypass node 2.
and so on...

/Z endFor
0\/
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Computing the Transitive Closure: Warshall’s Algorithm

We can use this matrix to compute the t(R), the transitive closure of R.

Idea: Every time we find this pattern:

T

| >K > ]

...add this edge:

Warshall’s Algorithm

Consider all ways to bypass node 1.
Then forget about node 1.

Consider all ways to bypass node 2.
and so on...

endFor

0\/.
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Example:

k=1

<

|
o NolNole)
oNoNoN
O OO

oo O

Warshall’s Algorithm

endFor
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Example:

k=2 —_ ——

=<

|
oNoNoNe
oNoNoN
oL OO

OO

Warshall’s Algorithm

endFor
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Example:

k=3

oNoNoNe
oNoNoN
(oo I e» I Tl T

CS340-Discrete Structures

OO+

Warshall’s Algorithm

endFor
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Example:

k=3

<

|
oNoNoNe
oNoNoN
(oo I e» I Tl T

CS340-Discrete Structures

O HF K=

Warshall’s Algorithm

endFor

Section 4.1

Page 40



Example:

k=4 ..Done; 4\ N\
no more changes. 1—>2 \>3_/7>4

0111
(85
_0 00 O_ Warshall’'s Algorithm

endFor
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Path Problems: Floyd’s Algorithm

Consider a directed graph with weights on the edges.

Problems:
Find the cheapest path from x to vy.
Find the shortest path from x to y.
(Just make all weights = 1!)
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Path Problems: Floyd’s Algorithm

Consider a directed graph with weights on the edges.

Idea:
Represent the graph with a matrix.

Store the weights.
For non-existent edges, use
a weight of co.
Then modify Warshall’s Algorithm.

888880
88880~
88808~
S
mogggN
©gggsr
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Path Problems: Floyd’s Algorithm

Consider a directed graph with weights on the edges.

Floyd’s Algorithm:
fork :=1ton
fori:=1ton
forj:=1ton
Mij .= Mlk+Mk_]
endIf
endFor
endFor
endFor
0 10 10 o 20 10
0 0O oo 30 o 00
(0e] (0'e] 0 30 (0'e] (0e]
M =
(0'0) (0'e) (0'0) 0 (0'e) (0'0)
(0'0] (0'e] (0'0] 40 0 (0'0]
0 © 00 00 5 0
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Path Problems: Floyd’s Algorithm

Consider a directed graph with weights on the edges.

Floyd’s Algorithm:
fork :=1ton
fori:=1ton

forj:=1ton

MU:=MW+M@
endIf
endFor
endFor
endFor
0 10 10 40 15 10|
co 0O oo 30 o0 oo
oo oo 0 30 oo oo
M =
oo o o 0 o 00
co o o0 40 0 oo
co oo oo 45 5 0
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Path Problems: Floyd’s Algorithm

How can we remember the best path? P=next node in best path!

Floyd’s Algorithm:
fork :=1ton
fori:=1ton
forj:=1ton
if My+M; < My
Mjj := Myc+M
Py 1=K
endIf
endFor
endFor
endFor
0 10 10 40 15 10| 0 0 0 2 6 0]
o) 0O o 30 o oo 0 0 0 0 0 0
M= |® @ 0 30 oo o P = 0 0 0 0 0 0
oo o o O o ©o 0 0 0 0 0 0
co oo oo 40 0 co 0 0 0 0 0 0
|00 o o 45 5 0 0 0 0 5 0 0
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