Section 1.3 Ordered Structures

Tuples
Have order and can have repetitions.
(6,7,6) is a 3-tuple
() is the empty tuple
A 2-tuple is called a “pair” and a 3-tuple is called a “triple”.
We write \((x_1, \ldots, x_n) = (y_1, \ldots, y_n)\) to mean \(x_i = y_i\) for \(1 \leq i \leq n\).

Cartesian Product:
\(A \times B = \{ (x,y) \mid x \in A \text{ and } y \in B \}\)
This definition extends naturally:
\(A \times B \times C = \{ (x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C \}\)

Notation:
\(A^0 = \{ () \}\)
\(A^1 = \{ (x) \mid x \in A \}\)
\(A^2 = \{ (x_1,x_2) \mid x_2 \in A \text{ and } x_2 \in A \}\)
\(A^n = \{ (x_1, \ldots, x_n) \mid x_i \in A \}\)

In-Class Quiz:
Does \((A \times B) \times C = A \times (B \times C)\)?
Lists
Like tuples but there is no random access.
Example:
 <a,b,c,b> is a list with 4 elements
 <> is the empty list.

List operations: head, tail, cons
 head (<a,b,c,b>) = a
 tail (<a,b,c,b>) = <b,c,b>
 cons (e, <a,b,c,b>) = <e,a,b,c,b>

The set of lists whose elements are in A is denoted by lists(A).

Lists can contain lists:
 < 3 , <a,b,c> , 4 , <7,8> , e , <> , g >

In-class Quiz:
For L = <<<a>,b,<c,d>>>
 Find head(L)
 Find tail(L)
Strings

Like lists.
 All elements come from an alphabet.
 The elements are juxtaposed.
Example: alphabet is $\mathcal{A} = \{a, b\}$.
 Some strings: $a, b, aa, ab, ba, bb, aaa, bbb, ...$

The empty string is denoted by Λ (lambda).

Concatenation of two strings is their juxtaposition.
 The concatenation of ab and bab is $abbab$.

This is true of any string s:
 $s \Lambda = \Lambda s = s$

If s is a string, s^n denotes the concatenation of s with itself n times.
 $s^0 = \Lambda$.
Example:
 $(ab)^3 = ababab$
Languages

Given an alphabet A, a **language** is a set of strings over A.

Notation:

If A is an alphabet, then the set of *all* strings over A is denoted A^*. Some languages over A are:

\emptyset, $\{\Lambda\}$, A, A^*

Example:

Let alphabet be $\{a, b\}$

$\{ab^n a \mid n \in \mathbb{N} \} = \{aa, aba, abba, abbba, \ldots\}$

Language Operations:

Let L and M be two languages.

The **product** of L and M, denoted LM, is

$L M = \{ \text{st} \mid s \in L \text{ and } t \in M \}$

Example:

Let $L = \{a, b\}$ and $M = \{cc, ee\}$. Then…

$LM = \{acc, aee, bcc, bee\}$

$ML = \{cca, ccb, eea, eeb\}$
In-class Quiz:
What are the products \(L \emptyset \) and \(L \{ \Lambda \} \)?

In-class Quiz:
Solve for \(L \) in the equation
\[
\{ \Lambda, a, b \} L = \{ \Lambda, a, b, aa, ba, aba, bba \}
\]

Notation:
\[
\begin{align*}
 L^0 &= \{ \Lambda \} \\
 L^1 &= L \\
 L^2 &= LL \\
 L^n &= \{ s_1s_2...s_n \mid s_i \in L \}
\end{align*}
\]
The closure \(L^* \) is the set of all possible concatenations of strings in \(L \).
\[
L^* = L^0 \cup L^1 \cup ... \cup L^n \cup ...
\]

In-class quiz:
What are \(\{ \Lambda \}^* \) and \(\emptyset^* \)?
Example:
Examine the structure of an arbitrary string $x \in L^*(ML)^*$.

Approach: Use the definitions to write x in terms of strings in L and M.

Since $x \in L^*(ML)^*$, it follows that $x = uv$, where $u \in L^*$ and $v \in (ML)^*$.
Since $u \in L^*$, either $u = \Lambda$ or $u = s_1...s_n$ for some n where $s_i \in L$.
Since $v \in (ML)^*$, either $v = \Lambda$ or $v = r_1t_1...r_kt_k$ for some n where $r_i \in M$ and $t_i \in L$.
So x must have one of four forms:

- Λ
- $s_1...s_n$
- $r_1t_1...r_kt_k$
- $s_1...s_n r_1t_1...r_kt_k$
Relations

A relation is a set of tuples. If \(R \) is a relation and \((x_1, \ldots, x_n) \in R \), we write \(R(x_1, \ldots, x_n) \).

We can usually represent a relation as a subset of some cartesian product.

Example:

Let \(R = \{(0,0), (1,1), (4,2), (9,3), \ldots, (k^2,k), \ldots\} \)

\[= \{(k^2,k) \mid k \in \mathbb{N}\} \]

We might call \(R \) the “is square of” relation on \(\mathbb{N} \).

Notice that \(R \subseteq \mathbb{N} \times \mathbb{N} \).

Notation:

If \(R \) is binary, we can use **infix** to represent pairs in \(R \).

For example, from the previous example, we have \((9,3) \in R \)

So we can write:

\(R(9,3) \)

\(9 \text{ R } 3 \)

\(9 \text{ is-square-of } 3 \)
Relational Databases

A relational database is a relation where the indexes of a tuple have associated names, called attributes.

Example:
Let Students = \{ (x,y,z) | x is a Name, y is a Major, and z is Credits) \}

Who are the students majoring in CS?
\{ x | (x, “cs”, z) ∈ Students \}

Note: we need a way to tell values apart from variables: (x,cs,z)?

How many math majors are upper division students?
| | \{ x | (x, “math”, z) ∈ Students and z ≥ 90 \} |

What is the major of JohnSmith?
\{ y | (“JohnSmith”, y, z) ∈ Students \}

What is the Math departments database of names and credits?
\{ (x,y) | (x, “math”, z) ∈ Students \}

<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>JohnSmith</td>
<td>cs</td>
<td>70</td>
</tr>
<tr>
<td>FredBrown</td>
<td>math</td>
<td>85</td>
</tr>
<tr>
<td>JackGreen</td>
<td>math</td>
<td>120</td>
</tr>
<tr>
<td>SueJones</td>
<td>cs</td>
<td>130</td>
</tr>
</tbody>
</table>
Counting Tuples (or strings or lists)

Product Rules:

$$|A \times B| = |A| \cdot |B|$$

$$|A^n| = |A|^n$$

Example: If $A = \{a,b\}$ and $B=\{1,2,3\}$ then

$$A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}$$

So $|A \times B| = |A| \cdot |B| = 2 \times 3 = 6$
Example:
Count the number of strings of length 8 over $A = \{a, b, c\}$ that begin with either a or c and have at least one b.

Solution: **Divide and conquer!**
Split the problem up into easier problems and combine the results.
Let U be the universe = the set of strings over A of length 8 that begin with either a or c.
Let B be the subset of U consisting of strings with no b's.
The set we want to count is then $U - B$.

Calculate the cardinality of $U - B$.
$$|U - B| = |U| - |U \cap B|$$
$$= |U| - |B|$$
since B is a subset of U

What is the cardinality of U?
$$U = \{a, c\} \times A^7$$
$$|\{a, c\} \times A^7| = |\{a, c\}| \times |A^7| = |\{a, c\}| \times |A|^7 = 2(3)^7$$

What is the cardinality of B, the set of strings not containing b?
$$|\{a, c\}^8| = |\{a, c\}|^8 = 2^8$$

So the answer is:
$$|U - B| = |U| - |U \cap B|$$
$$= |U| - |B| = 2(3)^7 - 2^8 = 4118$$