1. Write **countable** or **uncountable** to indicate the cardinality of each set.
 a. Rational numbers ________________________________
 b. Positive real numbers ________________________________
 c. \(\mathbb{N} \cup \mathbb{N} \) ________________________________
 d. \(\text{power}(\mathbb{N}) \) ________________________________
 e. \(\mathbb{N} \times \mathbb{N} \times \mathbb{N} \) ________________________________
 f. \(\{a, b\}^* \) ________________________________

2. Write an inductive definition for each set.
 a. \(S = \{a\}^* \times \{b\}^* \). Assume that the basis case is: \((\Lambda, \Lambda) \in S\).

 b. \(S = \{<1>, <3, 1>, <5, 3, 1>, <7, 5, 3, 1>, \ldots\} \).

3. Show each step in the calculation of \(f(47) \), where \(f \) is defined by
 \[
 f(0) = 0 \\
 f(n) = f(\text{floor}(n/3)) + n
 \]

4. Write a recursive definition for the following function.
 \(f(n) = 4 + 6 + \ldots + (2n + 4) \), where \(n \in \mathbb{N} \).
6. Write a recursive definition for the procedure leaves, where for a binary tree T, let $leaves(T)$ be a procedure to print out the leaves of T as they occur from left to right.

7. For each of the following relations, write down the properties that the relation satisfies from the list: reflexive, symmetric, transitive, irreflexive, antisymmetric.
 a. isParentOf, over the set of people.
 b. \neq, over the set \mathbb{N} of natural numbers.
 c. isSubsetOf, over a collection of sets.

8. Given the following binary relations over $\{a, b, c, d\}$.
 $\begin{align*}
 R &= \{(a, b), (b, c), (c, c), (d, c)\} \\
 S &= \{(b, a), (c, b), (c, d)\}
 \end{align*}$
 a. Find $R \circ S$
 b. Find $S \circ R$

9. Find the transitive closure of $R = \{(1, 2), (3, 1), (3, 2), (2, 4)\}$.
10. Given the following weighted graph.

a. Draw a matrix that can be used to look up the length of shortest paths between any two points.

b. Draw a path matrix that can be used to compute the shortest path between any two points.