Name

Due: Beginning of Class Monday April 12, 2010.

Hand in hard copy. Staple all pages.

1. Evaluate each expression.

2. Let $f : \mathbb{N}_9 \to \mathbb{N}_9$ be defined by $f(x) = 3x \mod 9$. Evaluate each expression.

3. Let $f(x) = 3x^2$ and let g(x, y) = 2x + y. Find an expression that uses f and g to represent the following expression.

 $6a^2 + 3b^4$

- 4. Express each of the following function definitions as a composition of known functions from the set {seq, dist, pairs, map, +, -, *, cons, head, tail}.
 a. f(n, g) = ⟨g(0), g(1), ..., g(n)⟩.
 - **b.** $f(n) = \langle \log_2(1), \log_2(2), ..., \log_2(n+1) \rangle$.
- **5.** Let $f : \mathbf{N} \rightarrow \mathbf{N}$ be defined by $f(x) = x \mod 12$.
 - **a.** Show that f is not surjective.

b. Show that f is not injective.

6. Show that the set S of odd integers and the set Z of integers have the same cardinality. (i.e., find a bijection between the two sets.)

7. Let f: N₇ → N₇ be defined by f(x) = (4x + 3) mod 7.
a. (Fill in the blank.) f is a bijection because gcd(_____) = 1.
b. Find a formula for f⁻¹, the inverse of f.

8. Let $S = \{\text{one, two, three, four, five, six, seven, eight}\}$ and suppose that

 $h: S \rightarrow \mathbf{N}_8$ is the hash function defined by

 $h(x) = \text{length}(x) \mod 8$,

where length(x) is the number of letters in x. Use h to place each element of S into the following hash table starting with one, then two, and so on until eight. Resolve collisions by **linear probing with a gap of 3.**

