Exceptional Control Flow:
Signals and Nonlocal Jumps

(Chapter 8)

ECF Exists at All Levels of a System

Exceptions
= Hardware and operating system kernel software
Process Context Switch
= Hardware timer and kernel software
Signals
= Kernel software
Nonlocal jumps

= Application code

\

> Previous Slides

> These Slides

The World of Multitasking

m System runs many processes concurrently

m Process: executing program

= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when I/O available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously

= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone

Programmer’s Model of Multitasking

Basic functions
fork spawns new process
Called once, returns twice
exit terminates own process
Called once, never returns
Puts it into “zombie” status
wait and waitpid wait for and reap terminated children
execve runs new program in existing process
Called once, (normally) never returns

Programming challenge
" Understanding the nonstandard semantics of the functions
= Avoiding improper use of system resources
e.g. “Fork bombs” can disable a system

Linux Process Hierarchy

.....................
e vy
. .
* ‘e
0 .

G
‘e
",

.
[0
TTT T TT Ll

Login shell

Login shell
Child

w w Note: you can view the
hierarchy using the Linux

pstree command

Shell Programs

m Ashell is an application program that runs programs on behalf
of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh/tcsh BSD Unix C shell
= bash “Bourne-Again” Shell (default Linux shell)

int main ()

{ Execution is a
char cmdline[MAXLINE]; /* command line */ sequence of read/

while (1) { evaluate steps
/* read */
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof (stdin))
exit(0) ;

/* evaluate */
eval (cmdline) ;

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0]):;
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {

int status;

if (waitpid(pid, &status, 0) < 0)

unix error("waitfg: waitpid error") ;

}
else

printf("%d %s", pid, cmdline);

}

return;

What Is a “Background Job”?

Users generally run one command at a time

= Type command, read output, type another command

Some programs run “for a long time”

= Example: “delete this file in two hours”

unix> sleep 7200; rm /tmp/junk < shell stuck for 2 hours

A “background” job is a process we don't want to wait for

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> ¢ ready for next command

Problem with Simple Shell Example

Our example shell correctly waits for and reaps foreground jobs.

What about background jobs?

Will become zombies when they terminate
Will never be reaped because shell (typically) will not terminate
Will create a memory leak that could run the kernel out of memory

Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc € csh syntax
maxproc 31818
unix> ulimit -u ¢ bash syntax

31818

Exceptional Control Flow to the Rescue!

Problem: The shell doesn't know when a background job will finish
= |t could happen at any time
= Regular control flow: “Wait until running job completes, then reap it”
= Can't reap exited background processes in a timely fashion

Solution: Use a Signal

" The kernel will interrupt the shell to alert it when a background process
completes

10

Signals

Terminology
SIGKILL, SIGINT, SIGSEGV, SIGALRM, SIGFPE, SIGCHLD, ...
Sending signals
Receiving signals
Signal handler
Pending, Blocked
/bin/kill
Process groups
Installing handlers, catching signals

11

Signals

A signal is a message that notifies a process that an event of
some type has occurred in the system

= Similar to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by a small integer ID (1-30)
" The only information is its ID (and the fact that it occurred)

ID Name Default Action Corresponding Event
SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program [cannot override or ignore]

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Sending a Signal

Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event

Examples:
a divide-by-zero happened (SIGFPE)
a child process terminated (SIGCHLD)

= Another process has invoked the kill () system call

kill (pid,siq)
causes the kernel to send a signal to a process

13

Receiving a Signal

A destination process receives a signal when it is forced by the
kernel to react in some way to the delivery of the signal

What happens when the signal is received?
= Jgnore the signal (do nothing)
" Terminate the process
= Catch the signal by executing a user-level function called signal handler

= Similar to a hardware exception handler being called in response to
an asynchronous interrupt:

(1) Signal received (2) Control passes
by process |\ tosignal handler
ICUI‘I‘ i
next (3) Slgnal
handler runs
(4) Signal handler
returns to
next instruction

14

Pending and Blocked Signals

A signal is pending if sent but not yet received
" There can be at most one pending signal of any particular type

" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

A pending signal is received at most once
= Areceived signal will be acted upon (handled, etc.)

A process can block the receipt of certain signals
" The signal remains pending.
" |tis not received.
"= The signal is received when it is finally unblocked.

15

Pending/Blocked Bits

Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a sighal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function
= Also referred to as the signal mask.

16

Process Groups

Every process belongs to exactly one process group

REC pid=40
pPgid=20 pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process

17

The /bin/kill command

Send a signal to a process

(Can send any signal to a process or process group)

. linux> ./forklé6
Example: Send SIGINT to a process _~"™*" 0id=15885 proc-group=26859

/bin/kill -2 15887 Child: pid=15887 proc-group=15885
Child: pid=15886 proc-group=15885

Child: pid=15888 proc-group=15885
linux> ps

PID TTY TIME CMD
15886 pts/13 00:00:01 fork

15887 pts/13 00:00:01 fork
(") 15888 pts/13 00:00:01 fork
2 = SIGINT 15927 pts/13 00:00:00 ps
_ 26859 pts/13 00:00:00 csh
9= SIGK"-L linux> /bin/kill -2 15887
etcl.. linux> Ps
PID TTY TIME CMD

15886 pts/13 00:00:17 fork
15888 pts/13 00:00:17 fork
16101 pts/13 00:00:00 ps
26859 pts/13 00:00:00 csh
linux>

The /bin/kill command

Send a signal to a process

(Can send any signal to a process or process group)

. linux> ./forklé6
Example' Send SIGINT to a group Parent: pid=19691 proc-group=26859

/bin/kill -2 -19691 Child: pid=19692 proc-group=19691

Child: pid=19693 proc-group=19691
Child: pid=19694 proc-group=19691
linux> ps
PID TTY TIME CMD
4)

19692 pts/13 00:00:03 fork
19693 pts/13 00:00:03 fork

19694 pts/13 00:00:03 fork
2 = SIGINT 19730 pts/13 00:00:00 ps
9 = SIGKILL 26859 pts/13 00:00:00 csh
linux> /bin/kill -2 -19691
linux> ps
etc...) PID TTY TIME CMD
20058 pts/13 00:00:00 ps
Sends it to all processes in the group 26859 pts/13 00:00:00 csh

linux>

Sending Signals from the Keyboard

Typing ctrl-c sends a SIGINT to every job in the foreground process group.
SIGINT — default action is to terminate each process

Typing ctrl-z sends a SIGTSTP to every job in the foreground process group.

SIGTSTP — default action is to stop (suspend) each process

pid=20

pid=40
pgid=20

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20

Foreground
process group 20

20

Example of ctrl-cand ctrl-z

linux> ./forkl7
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
linux> ps w
PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8
bluefish> fg
./forksl?7
<types ctrl-c>
linux> ps w
PID TTY
27699 pts/8
28110 pts/8

STAT
Ss

R+

STAT

Ss
R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./forkl’7
./forkl7
pPs W

COMMAND
-tcsh
pPsS W

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

21

Sending Signals with kill Function

void forkl2()

{
pid_t pid[N];
int i;
int child_status;

for (1 = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1l) ;

}

/* Parent terminates the child processes */
for (i = 0; 1 < N; i++) {
printf ("Killing process %d\n", pid[i]):
kill (pid[i], SIGINT) ;
}

/* Parent reaps terminated children */
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

22

Receiving Signals

Suppose kernel is returning from an exception handler and is

ready to pass control to process p

Process A

user code
kernel code
Time user code

kernel code

user code

} context switch

} context switch

Important: All context switches are initiated by calling

some exception handler.

23

Receiving Signals

Suppose kernel is returning from an exception handler and is ready
to pass control to process p...

Kernel computes pnb = pending & ~blocked

The set of pending nonblocked signals for process p

if (pnb == 0)
= Pass control to next instruction in the logical flow for p
else

= Choose least nonzero bit k in pnb and force process p to receive signal k
"= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p

24

Default Actions

Each type of signal has a predefined default action

" The process terminates
" The process terminates and dumps core
" The process ignores the signal
" The process suspends execution
(until restarted by a SIGCONT signal)

Installing Signal Handlers

The signal function modifies the default action associated with
the receipt of signal signum:

handler t *signal(int signum, handler t *handler)

éis parameter can be: \

= SIG_IGN: Ignore signals of type signum

= SIG_DFL: Revert to the default action on receipt of signals of type signum
= QOtherwise, handler is the address of a signal handler function

= Called when process receives a signal of type signum.

= Referred to as “installing” the handler.

= Executing handler is called “catching” or “handling” the signal.

= When the handler returns, control passes back to instruction in the
\ control flow of the process that was interrupted by receipt of the signal.

26

Signal Handling Example

void int handler (int sig) {
safe printf ("Process %d received signal $d\n", getpid(), sigqg):;

exit (0) ; linux> ./forkl3

}

void forkl3() {
pid_t pid[N];

int

signal (SIGINT, int handler);

for

for

for

Killing process
Killing process
Killing process
Killing process

i, child status; Killing process

(i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1); /* child infin:

(i = 0; i < N; i++) {
printf ("Killing process %d\n‘Child 25418
kill (pid[i], SIGINT) ;

(1 =0; i < N; i++) {
pid t wpid = wait(&child staf
if (WIFEXITED (child status))

linux>

25417
25418
25419
25420
25421

Process 25417 received

Process 25418 received
" Process 25420 received
Process 25421 received
} Process 25419 received
Child 25417 terminated
terminated
Child 25420 terminated
Child 25419 terminated
Child 25421 terminated

signal
signal
signal
signal
signal 2

with exit
with exit
with exit
with exit
with exit

NMNMNDNMNDN

printf ("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

status
status
status
status
status

O O OO o

27

Concurrent Processes

28

Process C

Process B

Process A

Time

Concurrent Processes

Time

Process A

Process B

Process C

29

“Round-Robin” Process Scheduling

Process A Process B Process C

} context switch

kernel

«—

I
|
I
; I } context switch
: kernel | —1
[|
| |
I kernel I -
i I } context switch
I |
| |
| :
kernel | I } context switch
1 I
I |
I |
I 1 } context switch
I kernel 1|
| |
! ;
1

ker“
30

Signals Handlers as Concurrent Flows

m Asignal handler runs as a separate control flow that is

“inserted” into the main program

Time

The handler is not a separate process.

Process A
while (..) { handler () {

} }

Process B

I—) Signal is sent here

Signal is received

31

Another View of Signal Handlers as
Concurrent Flows

Process A

I

I Process B

[

: J <+— Signal sent
kernel :

I

I

I

I

< } context switch

mainline code

k | } context switch
erne :
I
I

kernel | ot ewiteh

Signal received —> : }con ext switc
handler :
kernel :
. e I
mainline code
|

kernel : } context switch

32

Concurrent Processes

Time

Process A

¢ -————————

Process B

G- ———

Process C

G- ———

Signal is sent

Signal is received

33

Signal “Funkiness”

Signal arrives during long system calls (say a read)?

m Signal handler interrupts read call

® Linux: upon return from signal handler, the read call is restarted
automatically

= Some other flavors of Unix can cause the read call to fail with an

EINTER error number (exrrno)
In this case, the application program can restart the slow system call

Subtle differences like these complicate the writing of portable
code that uses signals
Consult textbook for details

34

Safe Signal Handling

Handlers are tricky because they are concurrent with main
program and share the same global data structures.
= Shared data structures can become corrupted.

Here are some guidelines to avoid trouble.

35

Guidelines for Writing Safe Handlers

Keep your handlers as simple as possible
e.g., Set a global flag and return

Call only async-signal-safe functions in your handlers
printf, sprintf, malloc, and exit are not safe!

Save and restore errno on entry and exit
So the handler doesn’t overwrite a value of errno thatis in use

Protect accesses to shared data structures by temporarily
blocking all signals.
To prevent possible corruption

Declare global variables as volatile
To prevent compiler from storing them in a register

Declare global flags as volatile sig atomic t
flag: variable that is only read or written (e.g. flag = 1, not flag++)
Flag declared this way does not need to be protected like other globals

36

Async-Signal-Safety

A function is async-signal-safe if either reentrant or non-
interruptible by signals.

Reentrant:
Can be “in execution” by several threads
Variables are local (stored on stack)
All accesses to non-local data are carefully managed

Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal”
= Popular functions on the list:
= exlt, write, wailt, waitpid, sleep, kill
® Popular functions that are not on the list:
» printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function
37

Safely Generating Formatted Output

Use the reentrant Sio (Safe 1/0 library) from csapp . c in your
handlers.
ssize t Sio puts(char s[]) /* Put string */
ssize t Sio putl(long v) /* Put long */
void Sio error(char s[]) /* Put msg & exit */

/* Safe SIGINT handler */
void sigint_ handler(int sig) ({
Sio puts("You hit ctrl-c!\n");

sleep(2);

Sio_puts("Let me think..."); linux> ./sigintsafe

sleep(1l); <ctrl-c>

Sio_puts("Good bye!\n"); You hit ctrl-c!

_exit(0); Let me think...Good bye!
} linux>

38

int ccount = 0;

void child _handler(int sig) {
int olderrno = errno;
pid_t pid;

}

if ((pid = wait(NULL)) < 0)
Sio_error("wait error");

ccount--;

Sio puts("Handler reaped child ");

Sio putl((long)pid);

Sio_puts(" \n");

sleep(1l);

errno = olderrno;

void forkl4 () {

pid_t pid[N];

int i;

ccount = N;

Signal (SIGCHLD, child handler);

for (1 = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep(1l);
exit(0); /* Child exits */
}
}

while (ccount > 0) /* Parent spins */

.
14

Correct Signal Handling

Pending signals are not
queued

= For each signal type, one
bit indicates whether or
not signal is pending...

= ...thus at most one
pending signal of any
particular type.
You can’t use signals to
count events, such as
children terminating.

linux> ./forkl4
Handler reaped child 23240
Handler reaped child 23241

... progam hangs here!

39

Correct Signal Handling

Must wait for all terminated child processes

" Put wait inaloop to reap all terminated children

void child_handler2(int sig)
{
int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio puts("Handler reaped child ");
Sio putl((long)pid);
Sio_puts(" \n");

if (errno != ECHILD)
Sio_error("wait error");

errno = olderrno; linux> ./forks

} Handler reaped

Handler reaped
Handler reaped
Handler reaped
Handler reaped
linux>

15

child 23246
child 23247
child 23248
child 23249
child 23250

40

A Program That Reacts to Internally

Generated Events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {
safe printf ("BEEP\n");

if (++beeps < 5)
alarm(l) ;
else {

exit (0) ;
}

}

main () {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in

1 second */

while (1) {
/* handler returns here */

}

safe printf ("BOOM!'\n") ;

internal.c

linux>
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
linux>

./internal

41

Nonlocal Jumps

42

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for transferring
control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

43

setjmp/longjmp

void longjmp (jmp buf j, int 1)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp
= Called once, but never returns

longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from jump
buffer j

= Set $eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

44

setjmp/longjmp

Goal: return directly (jump) out of a deeply-nested function.

void foo(void) {

if (errorXXX)
longjmp (buf, 1);

it;ar();
}

void bar(void) {

if (errorY¥YYY)
longjmp (buf, 2);

45

jmp buf buf;
void foo(void), bar(void);

int main()

{
switch(setjmp(buf)) {
case O:

foo();
break;
case 1:

setjmp/longjmp

printf ("Detected an errorXXX condition in foo\n");

break;
case 2:

printf ("Detected an errorYYY condition in foo\n");

break;
default:

printf ("Unknown error condition in foo\n");

-

46

Limitations of Long Jumps

Works within stack discipline

Can only long jump to environment of function that has been called but

not yet completed

jmp buf env;

P1() {
if (setjmp(env)) {
/* Long Jump to here */
} else {
P2() ;
}
}

P2 () {
. P2(); . P3() ;

}

P3() {
longjmp (env, 1);
}

Before longjmp

Pl

P2

P2

P2

P3

After longjmp

Pl

Limitations of Long Jumps

Works within stack discipline

Can only long jump to environment of function that has been called but

not yet completed

jmp buf env;

P1() {
P2(); P3();
}

P2() {

}
}

P3() {
longjmp (env,

}

if (setjmp(env)) {
/* Long Jump to here */

1);

Pl

......... | P2

At setjmp

Pl

ey P2

P2 returns

Pl

P3

At longjmp 48

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include "csapp.h"

sigjmp buf buf;
linux> ./restart

void handler (int sig) { STARTING
siglongjmp (buf, 1); processing. ..
} processing. ..
int main() { g;:;:;;l?g' T & Ctrl-c
if (!sigsetjmp(buf, 1)) { 7
Signal (SIGINT, handler); process:f.ng. *
Sio puts (”STARTING\n"); processing. ..
} RESTART ! <€— Ctrlc
else processing. ..
Sio puts(”RESTART !\n"); processing. . .
while(1) { processing. ..
Sleep(1l);

Sio puts("processing...\n");

}

exit(0); /* Control never reaches here */

49

Summary

Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler

Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
"= Don’t have queues
= Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within

process
= Within constraints of stack discipline

50

