Program
Optimization

(Chapter 5)



Outline

m Generally Useful Optimizations

= Code motion/precomputation

" Strength reduction

= Sharing of common subexpressions

= Removing unnecessary procedure calls
m Optimization Blockers

" Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

= Branch Prediction



Performance Realities

There’s more to performance than asymptotic complexity.

m Constant factors matter too!
Easily see 10:1 performance range depending on how code is written

Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance

How programs are compiled and executed

How to measure program performance and identify bottlenecks

How to improve performance without destroying code modularity and
generality



Optimizing Compilers

Provide efficient mapping of program to machine
register allocation

code selection and ordering (scheduling)

dead code elimination
= eliminating minor inefficiencies
Don’t (usually) improve asymptotic efficiency

= up to programmer to select best overall algorithm
= Big-O savings are (often) more important than constant factors
= but constant factors also matter

Have difficulty overcoming “optimization blockers”

= potential memory aliasing
" potential procedure side-effects



Aliasing

“When data in memory can be acessed in more than one way”

Example: Is it safe to keep x in a register?

int x;

int *p;

*p = 123;

What if p points to x?

In general, we cannot know the answer to this question with out
running the program.



Limitations of Optimizing Compilers

m Fundamental constraint:

Must not cause any change in program behavior

= Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

m Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles
= e.g., Data ranges may be more limited than variable types suggest

m Most analysis is performed only within procedures
" Whole-program analysis is too expensive in most cases

m Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative!



Generally Useful Optimizations

Optimizations that you or the compiler should do regardless of
processor / compiler

Machine Independent Optimizations:

m Code Motion

m Reduction in Strength

m Using Registers for frequently accessed variables
m Share Common Subexpressions



Code motion

Reduce frequency that a computation is performed

IF it will always produce the same result
THEN move it out of inner loop

for (1 = 0; i < n; i++)

for (j = 0; j < n; j++)
a[n*i + j] = b[3j];




Code motion

Reduce frequency that a computation is performed

IF it will always produce the same result
THEN move it out of inner loop

for (1 = 0; i < n; i++)
for (J = 0; jJ < n; j++)
a[n*i + j] = b[j];

0; 1 < n; i++) {
n*i;
0; J < n; j++)
jl = bl[3];




Code motion

Most compilers do a good job with array code

and simple loop structures

Code Generated by GCC

for (i = 0; i < n; i++)

for (3

testqg
jle
imulg

leaq
movl

movsd
movsd
addqgq
cmpq
jne

0,
a[n*i + j]

J < n; j++)

= b[jl]’

$rcx, %rcx

L1

$rcx, %rdx

(%rdi, %$rdx,8), %$rdx
$0, %eax

(%rsi,%$rax,8), $%$xmmO
$xmm0, (%rdx,%rax,8)
$1, %rax

$rcx, %Srax

.L3

rep ; ret

HHHHHHEH

Test n

If 0, goto
ni = n*i
rowp = A +

j=20
loop:

t = b[]]
M[A+ni*8 + j*8]

J++
j:n
if !'=,
done:

goto loop
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Reduction in strength

Replace costly operations with simpler ones

Example: Replace multiply & divide with shifts & adds
l6*x 2 x << 4
e Depends on cost of multiply or divide instruction

® s it worth it? This is “machine dependent”
m Recognize sequence of products and replace with addition

for (1 = 0; i < n; i++)
for (j = 0; 3 ;] j = 0; jJ < n; j++)

a[n*i + j] ]1; i + j] = b[j];

11



Using registers

Reading and writing registers is much faster than
reading/writing memory!

Limitations
m Compiler not always able to determine whether variable can
be held in register

m Possibility of Aliasing
“Multiple ways of naming/accessing a variable or data item.”
There could be a pointer to this variable.
Putting it in a registers could be risky.
RISKY! It might change the behavior of the program!!!

The performance consequenceis huge!
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Share common subexpressions

Want to reuse computations where possible

m But compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */

up = val[ (i-1)*n + j];

down = wval[(i+l)*n + j];

left = wval[i*n + j-11];

right = val[i*n + j+1];

sum = up+down+left+right;
3 multiplications: i*n, (i-1)*n, (i+1)*n

leaq 1(%rsi), %$rax # i+l

leaq -1(%rsi), %r8 # i-1

imulg $%rcx, %rsi # i*n

imulg %rcx, %rax # (i+1) *n

imulg $%rcx, %r8 # (i-1)*n

addg $rdx, %rsi # i*n+j

addg $rdx, %$rax # (i+1) *n+j

addgq $rdx, %r8 # (i-1)*n+j

int inj = i*n + j;

up = val[in]j - n];

down = wval[in]j + n];

left = wval[inj - 1];
right = val[in] + 1];

sum = up+down+left+right;
1 multiplication: i*n

imulg $rcx, %rsi # i*n
addg $rdx, %rsi # i*n+j
movq $rsi, %rax # i*n+j
subqgq $rcx, %$rax # i*n+j-n
leaq ($rsi,%rcx), %$rcx # i*n+j+n
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Example: Convert a string to lower case

A function to convert string to lower case:

void lower (char *s) {
int 1i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a');

If length of string is n, how does the run-time of this function
grow with n?

m Linear, Quadratic, Cubic, Exponential?



Strien

First call:

int lencnt = 0;

size t strlen(const char *s)
size t length = 0;
while (*s !'= '\0') {

s++; length++;

}
lencnt += length;
return length;

}

{

Time required = n (i.e., proportional to string length)

Second call:
Another n

Number of times called:
n

Total time:

n+n+n+..n = n?

n2+.. = 0O(n?
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Example: Convert a string to lower case

A function to convert string to lower case:

void lower (char *s) {
int 1i;

for (1 = 0; i < strlen(s); i++)

s[i] -= ('A' - 'a');

}

if (s[i] >= 'A' && s[i] <= 'Z")

Notice: strlen is executed every iteration!
m Must scan string until finds '\0'
m strlenis linear in length of string
m The loop body is linear in length of string (n)
m The loop body is executed n times.

Overall performance is quadratic... O(n?)
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Example: Convert a string to lower case

void lower (char *s) {
int 1i;

for (1 = 0; 1 < strlen(s),; i++)
if (s[1i] >= 'A' && s[1i] <= 'Z'")
s[i] -= ('A' - 'a'");

}

Let’s apply code motion

Consider the call to strlen...

Result does not change from one iteration to another.
Compiler does not know this, though.
Move call to strlen outside of loop.
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Example: Convert a string to lower case

void lower (char *s) {
int 1i;
len = strlen(s);
for (1 = 0; 1 < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A' - 'a');

}

Let’s apply code motion

Consider the call to strlen...
Result does not change from one iteration to another.

Compiler does not know this, though.
Move call to strlen outside of loop.

18



Example: Convert a string to lower case

Linear Performance O(n): Time doubles when string length doubles

Quadratic Performance O(n?): Time quadruples when length doubles
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Optimization Blocker: Procedure Calls

Why couldn’t compiler move stxrlen out of inner loop?

" Procedure may have side effects
= Alters global state each time called

" Function may not return same value for given arguments
= Depends on other parts of global state
= Procedure 1lower could interact with strlen

Warning:
Compiler treats procedure call as a black box
Weak optimizations near them
Remedies:
" Use of inline functions
= GCC does this with =02

= Do your own code motion
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Memory Aliasing

/* Sum the rows in a n X n matrix “a”
and store in vector “b” */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (1 = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

# Code for inner loop
Loop:

movsd %$rsi,%rax,8), %$xmm0 # FP load
addsd (%$rdi) , %$xmmO # FP add

movsd $xmm0, (%rsi,%rax,8) # FP store

addg $8, %rdi
cmpq $rcx, %Srdi
jne Loop

Code updatesb[i] on every iteration

Why couldn’t compiler optimize this away?
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Memory Aliasing

/* Sum the rows in a n X n matrix “a”
and store in vector “b” */

void sum rowsl (double *a, double *b, long n) {
long i, j;
for (1 = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + §];

Must consider possibility that updates will affect program behavior.

double A[9] Value of B:
224, desired: [3, 28, 224]
64, 128} ; _
sum_rowsl (A, A+3, 3); i=0: [3, 8, 16]
b[0,1,2] = A[3,4,5] !!! i=1: [3, 22, 16]
i = 2: [3, 22, 224]
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Removing Aliasing

/* Sum the rows in a n X n matrix “a”
and store in vector “b” */

void sum rows2 (double *a, double *b, long n) {
long i, j;
for (i = 0; 1 < n; i++) {
double val = 0;

for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

# Code for inner loop
Loop:

addsd (%rdi) ,
addg $8, %rdi
cmpq srax, 3rdi
jne Loop

$xmm0 # FP load + add

No need to store intermediate results!
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Optimization Blocker: Memory Aliasing

Aliasing:
Two different memory references specify single location

Easy to have happenin C
= Address arithmetic
= Direct access to storage structures

Get in habit of introducing local variables
(e.g., accumulating within loops)

Your way of telling compiler not to check for aliasing
24



Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design

Hardware can execute multiple instructions in parallel
m But performance is limited by “data dependencies”

m Simple transformations can have dramatic performance
improvement

= Often, compilers cannot make these transformations

" Lack of associativity and distributivity in floating-point
arithmetic

25



Example: Data Type for Vectors

len-1

len
/* data structure for vectors */ data .
typedef struct{ 0
int len;
double *data;
} vec;

/* retrieve vector element and store at wval */
double get vec element(*vec, idx, double *val)
{
if (idx < 0 || i1dx >= wv->len)
return O;
*val = v->data[idx];
return 1;
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Benchmark Computation

void combinel (vec ptr v, int *dest)

{

long int 1i;

*dest = 0;
for (i = 0; i < vec_length(v); i++) {
data t val;

get vec element(v, i, &val);
*dest = *dest + wval;

}

Data Types Operations

Compute sum or
product of vector

elements
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Benchmark Computation

void combinel (vec ptr v, double *dest)
{
long int 1i;
*dest = 1.0;
for (1 = 0; i < vec _length(v); i++) {
data t val;
get vec element(v, i, &val);
*dest = *dest * wval;

}

Data Types Operations

Compute sum or
product of vector

elements
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Benchmark Computation

void combinel (vec ptr v, data t *dest) ;::;:lz::i:t?c:;r
{ elements
long int 1i;
*dest = IDENT;
for (1 = 0; i < vec _length(v); i++) {
data t val;
get vec element(v, i, &val);
*dest = *dest OP wval;
}
}
Data Types Operations
Use different types data t Use different definitions of OP
int + (with IDENT =0)
long * (with IDENT =1)
float
double

29



Cycles Per Element (CPE)

A convenient way to express performance of a program that
operates on vectors or lists

n = Length or number of elements to process
In our case:

CPE = cycles per OP

2500

jg’:zooo program 1
©C Slope =10.0
@1500
. Q
Total Time = £ 1000 program 2
CPE*n + Overhead | 5 Slope = 6.5
CPE = 3
SIope Of Iine L|>j X 0 5‘0 160 15;0 200

N = number of elements




Benchmark Performance: Baseline

void combinel (vec ptr v, data t *dest)
{

long int i;

*dest = IDENT;

Compute sum or
product of vector

for (i = 0; i < vec length(v); i++) { | elements
data t val;
get vec_element(v, i, &val);
*dest = *dest OP val;
}
}
Integer Double FP
Add Mult Add Mult
Combine1 22.68 20.02 19.98 20.18
unoptimized
Combine1 -O1 10.12 10.12 10.17 11.14
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Basic Optimizations

void combinel (vec ptr v, data t *dest)
{
long int i;
*dest = IDENT;
for (i = 0; i < vec length(v); i++) {
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary



Basic Optimizations

{

int i;

int length = vec_ length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (i = 0; i < length; i++)
t =t OP d[i];

*dest = t;

void combine4 (vec ptr v, data t *dest)

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary
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Basic Optimizations

{

void combine4 (vec ptr v, data t *dest)

int i;

int length = vec_ length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (i = 0; i < length; i++)
t =t OP d[i];

*dest = t;

Integer Double FP

Add Mult Add Mult

Combine1 -0O1 10.12 10.12 10.17 11.14

Combine4d

1.27 3.01 3.01 5.01

This eliminates sources of overhead in loop
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Modern CPU Design

Instruction Control

Retirement

Register
File

Instruction

Fetch Address
Control
Unit

»

_Instructions

Instruction

Cache

Decode
Operations
Register Updates : Prediction OK?
\ 4
1

General FP FP Load | Functional
: Integer Add Mult/Div Units
A A A A A A A
\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results
Addr. Addr.
Data Data
Execution
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Superscalar Processor

m A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved

from a sequential instruction stream and are usually
scheduled dynamically.

Without programming effort, a superscalar processor can
take advantage of the instruction level parallelism that
most programs have

Most CPUs since about 1998 are superscalar.
" |ntel: since Pentium Pro
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Basic Instruction Execution
Each instruction takes some time to execute.

We don’t start one instruction until the previous one has

completely finished.

time

LOAD

MUL

DIV

STORE

\

)

Y
Latency (How long the instruction takes)

<> Each space is a “cycle”

>
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Pipelined Instruction Execution

With pipelining, we can start a new instruction every cycle.
We can execute several instructions in parallel!

time

Latency (How long the instruction takes)

LOAD MUL DIV STORE
)
Y
—
LOAD
MUL o ° °
> Fully pipelined operation
DIV
STORE

>

38



Pipelined Instruction Execution

Sometimes we cannot start next instruction immediately
m Data dependencies

time

>

STORE

Latency (How long the instruction takes)

LOAD MUL DIV STORE
]
Y
LOAD
MUL Data Dependency Example:
DIV

Assume STORE must wait on DIV to finish
= A delay is introduced into the pipeline

39



Latency and Cycles-Per-Issue

Even though a unit (e.g., MUL) takes several cycles,
it is itself pipelined.

The “cycles-per-issue” is how often we can start a hew one

LOAD MUL DIV STORE
\ )
Y
Latency (How long the instruction takes)
—
MUL
MUL .
I > Cycles-per-issue (How often we can start a new one)
MUL

- NOTE: The MULITPLY unit is itself pipelined.
There can be several MULTIPLIES in execution.
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Integer ADD: More than one ADD unit

There are several (e.g., 3) addition units
Three ADDs can be started or executed at once.
Latency = 1, but the throughput is 3 ADDs/Cycle  tme S

ADD

H_J

Latency (How long the
instruction takes)

ADD

ADD

ADD

—

> How many we can do at once

<——> Each space is a “cycle”
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Integer ADD: More than one ADD unit

There are several (e.g., 3) addition units

Three ADDs can be started or executed at once.

Latency = 1, but the throughput is 3 ADDs/Cycle

time

ADD

H_I

Latency (How long the
instruction takes)

ADD

—

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

> How many we can do at once

\ The effective issue
time is 1/3 cycle
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Haswell CPU

= 8 Total Functional Units

Multiple instructions can execute in parallel

2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1 FP add
1 FP divide
Some instructions take > 1 cycle, but can be pipelined

Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer Divide 3-30 3-30
FP Multiply 5 1
FP Add 3 1
FP Divide 3-15 3-15
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x86-64 Compilation of Combine4

Look at one case: Integer Multiply
Look at the inner loop.

void combine4 (vec ptr v, int *dest)
{

int i;

int length = vec_length(v);

int *d = get vec start(v);

int t = 1;

for (1 = 0; 1 < length; i++)

t=¢t * d[i]’
*dest = t;




x86-64 Compilation of Combine4

Look at one case: Integer Multiply
Look at the inner loop.

.L519: # Loop:
imull $rax,%rdx,4) ,%ecx # t =t * d[1i]
addq $1,%rdx # i++
cmpqgq $rdx, $rbp # Compare length:i
jg .L519 # If >, goto Loop
Integer Double FP
Add Mult Add Mult
Combine4 1.27|  /3.01}  3.01 5.01
Latency 1.00( |3.00/ 3.0 5.00
Bound o]

It seems limited by the MUL instruction...
Can we make it go any faster?
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Loop Unrolling

Before: Each iteration of the loop executes the loop body 1 time.

Idea: Each iteration of the loop executes the loop body 2 times.

for (1 = 0; i < n; i++)
a[i] = b[i] * c[i];

}

for (i = 0; 1 < n-1; i+=2)
a[i] b[i] * c[i];
af[i+1] b[i+l] * c[i+1];
}




Loop Unrolling

Before: Each iteration of the loop executes the loop body 1 time.

Idea: Each iteration of the loop executes the loop body 2 times.

for (1 = 0; i < n; i++)
a[i] = b[i] * c[i];

}

for (i = 0; 1 < n-1; i+=2) n=15
af[i] = b[1i] * c[i]; 0,2,4,6,8,10,12,14
a[i+l] = b[i+1l] * c[i+1];

}
if (i < n) {
a[i] = b[i] * c[i]’

} 14
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Loop Unrolling (4 x)

Before: Each iteration of the loop executes the loop body 1 time.

Idea: Each iteration of the loop executes the loop body 4 times.

for (1 = 0; 1 < n; i++4+)
af[i] = b[i] * c[i];

}

for (i = 0; 1 < n-3; i+=4)
af[i] = b[1i] * c[i];
a[i+l] = b[i+1l] * c[i+1];
af[i+2] = b[i1+2] * c[1i+2];
a[i+3] = b[i1+3] * c[1+3];
}

for (; 1 < n; i++)

af[i] = b[i] * c[i];

}

n=15
0,4,8,12

12,13,14
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Loop Unrolling (2 x 1 unrolling)

void unroll2a combine(vec ptr v, data t *dest) ({
int length = vec _length(v);
int limit = length-1;
data t *d = get vec start(v);
data t x = IDENT;
int 1i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+l1l];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i];
}

*dest = x;

Performs 2x more useful work per iteration



Effect of Loop Unrolling

Integer Double FP

Add Mult Add Mult
Combine4 A27, 301 301 501
Unroll 2x1 ' 1.01)  3.01 3.01 5.01
Latency 11.00f  3.00]  3.000  5.00
Bound hiad

Helps integer add
Achieves latency bound
Others don’t improve. Why?

There is a sequential data dependency

X = (x OP d[i]) OP d[i+1];




What is Combine4 really doing?

Example Computation

(CCCCCC(L * d4[0]) * d[1]) * d[2]) * dI[3])
* d[4]) * d[5]) * d[e]) * d[7])

Note the sequential dependence
Performance is limited by latency of MUL

X = (x OP d[i]) OP d[i+1];




Reassociating the operations

int length = vec length(v);
int limit = length-1;

data t *d = get vec start(v);
data t x = IDENT;
int i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
X = x OP (d[i] OP d[i+1]) ;
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x = x OP d[i]; Compare to before

void unroll2aa combine(vec ptr v, data t *dest) {

} x = (x OP d[i]) oP d

[i+1];

*dest = x;

}

Can this change the result of the computation?

Yes, for Floating Point. Why?
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Reassociated Computation

1 4 x = (x OP d[i]) OP d[i+l];

° (CCCeee( * d[0o]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

x = x OP (d[i] OP d[i+1]);

(((L * (d4[0] * d[1]))* (d[2] * d[3]))
* (d[4] * d[53])) * (d[e] * d[7])

d, d,
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Effect of Reassociation

Integer Double FP
Add Mult Add Mult
Combine4 1.27 ,:}_.g\ ,3,._Q] ,5_0\1‘
Unroll 2x1 101 /301, /30|, [ 501
Unroll 2x1a 101 151 ‘151 | 251
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

Nearly 2x speedup for Int *, FP +, FP *
Why? Breaks sequential dependency

X

x OP (d[i] OP d[i+1]);

2 func. units for FP *
2 func. units for load

4 func. units for int +
2 func. units for load
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Reassociated Computation

What changed?

Ops in the next iteration can be started early
(no dependency)

Overall Performance
Number of elements = N
Number of operations = N/2 + 1
Latency = D cycles per op
Total cycles = (N/2 + 1) x D cycles

=N x D/2

Measured CPE = D/2 !l (forint *, FP +, FP *)
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New Idea: Use Separate Accumulators

x0 x0 OP d[i];

x1l OP d[i+1];

¢, What changed?

Two independent “streams” of

K operations
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Loop Unrolling with Separate Accumulators

void unroll2a combine (vec ptr v, data t *dest)

{
int length = vec_length(v);

int limit = length-1;

data_t *d = get vec start(v);
data t x0 = IDENT;

data t x1 = IDENT;

int i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 x0 OP d[i];

x1 x1l OP d[i+1];

}

/* Finish any remaining elements */
for (; i < length; i++) {
x0 = x0 OP d[i];

}
*dest = x0 OP x1;

A different form of reassociation
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Effect of Separate Accumulators

Integer Double FP

Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m 2x speedup (over unroll2) for Int *, FP +, FP *

" Breaks sequential dependency in a “cleaner,” more obvious way

x0
x1

x0 OP d[i];
x1l OP d[i+1];
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Effect of Separate Accumulators

Integer Double FP

Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 7101} 1.51 1.51 2.51
Unroll 2x2 | 0.81) 1.51 1.51 2.51
Latency Bound 100 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

Some improvement...
Theoretical Limit?

The Throughput Bound
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Unrolling & Accumulating

Ideas:
We can unroll to any degree L

We can accumulate K results in parallel
(L must be multiple of K)

Limitations?
Diminishing returns
= Cannot go beyond throughput limitations of execution units
Large overhead for short lengths
= Must finish off iterations sequentially
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Effects of Unrolling & Accumulating

Example Case: FP *

Intel Haswell
= Latency bound: 5.00
" Throughput bound: 0.50

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 501 501 501 501 501 501 5.01
g 2 2.51 2.51 2.51
5 3 1.67
E 4 1.25 1.26
§ 6 0.84 0.88
< 8 0.63

10 0.51

12 0.52
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Achievable Performance

Integer Double FP
Add Mult Add Mult
Original 22.68 20.02 19.98 20.18
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

Limited only by throughput of functional units

Up to 42x improvement over original, unoptimized code!
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Programming with AVX2
YMM Registers (%ymmO .. %ymm15)

16 registers, each 32 bytes
32 single-byte integers

NENNENNNNNNNNNNNNNNNNNNNNNNNEEEE

16 16-bit integers

NENNSESNSNENNNSEENENNNEEENENENER

8 32-bit integers

IENESEEESESN ENEEENNN ENNE SN ENEE

8 single-precision floats

IEEESESESESN SNEEENNN I NNE SN ENEE

4 double-precision floats

IEESESSEENESEEEE SNNEEEEE SNNEEEEE

1 single-precision float

[TIT]

1 double-precision float

[LIITITT]
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SIMD Operations

M Single Precision

vaddsd symmO , 3ymml , Symml

S ymmO
e e e e e e e e
/Q\./Q\./Q\./Q\./@\./@\./@\./Q\.1
Symml
B Double Precision
vaddpd symmO , 3ymml , Symml
% ymmO

hY

BB BB

Symml
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Using Vector Instructions

Integer Double FP

Add Mult Add Mult
Best (Scalar) 0.54 1.01 1.01 0.52
Vector Version 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput 0.06 0.12 0.25 0.12
Bound

Make use of AVX Instructions

Parallel operations on multiple data elements
See Web Aside OPT:SIMD on CS:APP web page
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Pipelined Instruction Execution
Fetch next instruction before previous instruction finishes.

time

ADD

SUB

MOV
ADD
CMP

JGE
??

<> Each space is a “cycle”

Which instruction to fetch if there is a conditional branch?



The Pipeline: What About Branches?

Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep Execution Unit busy

When it encounters conditional branch, it cannot reliably
determine where to continue fetching

404663:
404668:
40466b:
40466d:

404685:;
40468a:
40468d:

mov
cmp
jge
mov

mowv

add
sub

$0x0, $eax
%rdi) ,%rsi
404685

} In execution

How to continue?

0x8 (%$rdi) , $rax
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Branch Outcomes

When CPU encounters a conditional branch,

it cannot determine where to continue fetching.

Branch Taken: Transfer control to branch target

Branch Not-Taken: Continue with next instruction in sequence
Can’t be sure until the outcome is determined by branch/integer unit

404663:
404668:
40466b:
40466d:

404685:;
40468a:
40468d:

mov
cmp
jge
mov

mowv

add
sub

$0x0, $eax
%rdi) ,%rsi

404685

0x8 (%$rdi) , %ra

2 Branch Not-Taken

Branch Taken
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“Branch Prediction”
Guess which way branch will go!

Begin executing instructions at predicted position

...but must not modify register or memory data !

404663: mov $0x0, $eax

404668: cmp %rdi) ,%rsi
40466b: jge 404685 —

40466d: mov  0x8 (%rdi) “$rax ? Branch Not-Taken
} Keep fetching and executing here

404685: mov
40468a: add
40468d: sub
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“Branch Prediction”
Guess which way branch will go!

Begin executing instructions at predicted position

...but must not modify register or memory data !

404663:
404668:
40466b:
40466d:

404685:;
40468a:
40468d:

mov
cmp
jge
mov

mowv

add
sub

$0x0, $eax
%rdi) ,%rsi

404685

0x8 (%$rdi) , %ra

}Ke

Branch Taken

pp fetching and executing here
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Branch Prediction

401029: vmulsd (%rdx) , $xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx

401034: jne 401029 —

|

What is the best guess?
e Jump taken
¢ Jump not taken

The jump WILL BE TAKEN.
Why?

1



Expanding the Loop

401029: vmulsd (%rdx),%$xmmO,%$xmm0 Assume

40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .

401034: jne 401029 =98

Predict Taken (OK)

401029: vmulsd (%rdx) , $xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx

401034: jne 401029 i=99

o 7 Predict Taken
401029:  vmulsd (¥rdx) %m0, S | (Oops) T
40102d: add $0x8, $rdx ~(
401031: cmp $rax, $rdx ~—_ Bad u!adates Executed
401034: jne 401029 i=100 _to registers

) Uocation)

401029: vmulsd (%rdx) ,$xmmO , $xmmO Keep going
40102d: add  $0x8,3%rdx Fetched

(still don’t know
401031: cmp srax, srdx . g ok _l_
401034: jne 401029 i=101| we made a mistake)




Branch Misprediction Invalidation

401029: vmulsd (%rdx), $xmmO, $xmmO Assume

40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .

401034: jne 401029 =98

Predict Taken (OK)
401029: vmulsd (%rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx
401031: cmp $rax, srdx

401034: jne 401029 i=99
o 7 Predict Taken
(Oops)

—40102d: _add $0x8, rdx
—401031 ;. ecmn Frax Srdx
—401034; __3ne 401029 =100

7 Must “Invalidate” these

- 401029:  vmulsd (frdy} fymm0 SwmmQ  Keep going

IOLoat, e T (sti]l don’t know
401034+ ne— 401020 =101 We/made a mistake)
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Branch Misprediction Recovery

401029:
40102d:
401031:
401034:
401036:
401040:

vmulsd (%rdx) , $xmmO, $xmmO

add
cmp
jne
add

$0x8, $rdx .
$rax, srdx 1=99

97025 —g— Branc

vmovsd %$xmmO, (%$rl2)

h Not-Taken

Must
Reload
Pipeline

Performance Cost

Can be large (many lost clock cycles)

A major performance limiter
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Modern CPU Design

Instruction Control

Retirement

Register
File

Instruction

Fetch Address
Control
Unit

»

_Instructions

Instruction

Cache

Decode
Operations
Register Updates : Prediction OK?
\ 4
1

Load e Functlor!al
Units

A A A A A A

\ 4 A\ 4 A\ 4 A\ 4 A\ 4 A\ 4

Operation Results
Addr. Addr.
Data Data
Execution
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Getting High Performance

m Use good compiler and the right flags

m Don’t do anything stupid
Watch out for hidden algorithmic inefficiencies
Write compiler-friendly code

Watch out for optimization blockers:
procedure calls & memory references

Look carefully at innermost loops (where most work is done)

m Tune code for machine
Exploit instruction-level parallelism
Avoid unpredictable branches
Make code cache friendly (to be covered later)
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