Exceptional Control Flow:
Exceptions and Processes

(Chapter 8)

Outline

m Exceptional Control Flow
" Interrupts
" Traps
= Exceptions
m Processes
" Fork
" Execve
= Exit
" Wait

Control Flow

Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s flow of control

Physical control flow

<startup>
inst,;
) inst
Time .2
inst;
inst,
<shutdown>

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
" instruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

Exists at all levels of a computer system

Low level mechanisms

1. Exceptions

Change in control flow in response to a system event
(i.e., change in system state)

Implemented using combination of hardware and OS software

Higher level mechanisms
2. Process context switch
Implemented by OS software and hardware timer
3. Signals
Implemented by OS software

4. Nonlocal jumps: setjmp () and longjmp ()
Implemented by C runtime library

Exceptions

An exception is a transfer of control to the OS kernel in response to
some event (i.e., change in processor state)
Kernel is the memory-resident part of the OS

Examples of events: Divide by 0, arithmetic overflow, page fault, |/O request
completes, typing Ctrl-C

User code Kernel code

Event — |_current Exception R
|_next Exception processing
by exception handler

]

[

* Return to |_current
* Return to |_next
* Abort

Interrupt Vectors

Exception
numbers

N =

n-1

Exception

Table

code for
exception handler 0

code for
exception handler 1

¢ _~
o

./

code for
exception handler 2

.\

code for
exception handler n-1

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor
Indicated by setting the processor’s interrupt pin
Handler returns to “next” instruction

Examples:
" Timer interrupt
Every few ms, an external timer chip triggers an interrupt
Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Examples of x86-64 Exceptions

Exception Number
0

13

14

18

32-255

Description

Divide by zero

General protection fault
Page fault

Machine check

OS-defined exceptions

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

10

System Calls

Each x86-64 system call has a unique ID number

Examples:

Number
0
1
2
3
4

57
59
60
62

Name
read
write
open
close
stat
fork
execve
exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

11

System Call Example: Opening File

User calls: open (filename, options)
Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: of 05 syscall # Return value in %rax
e5d80: 48 3d 01 fo ff ff cmp $OxFFfffffffffffOOL,%rax

e5dfa: c3 retq
User code Kernel code m $rax contains syscall number
m Other argumentsin $xrdi,
Exception $rsi, $rdx, $rl0, $r8, $r9

syscallv .

cmp - , in &
\l Openfile ™ Return value in $rax
Returns m Negative value is an error

corresponding to negative
errno

A\ 4

12

Fault Example: Page Fault

int a[1000];

m User writes to memory location Tain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process Kernel Code

movl

A\ 4

] Copy page from
returns disk to memory

y

exception: page fault

m Page handler must load page into physical memory

m Returns to retry the faulting instruction

m Successful on second try

13

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process Kernel Code

l Exception: page fault

movl >

Detect invalid address

A 4

> Signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Processes

m A process is an instance of a running program.
One of the most profound ideas in computer science
Not the same as “program” or “processor”

Process provides each program with two key
abstractions:
= logical control flow
= Each program seems to have exclusive use of the CPU
= Provided by kernel mechanism called context switching
" Private address space

= Each program seems to have exclusive use of main
memory.

= Provided by kernel mechanism called virtual memory

Memory

Stack

Heap

Data

Code

CPU

Registers

15

Processes

Definition: A process is an instance of a running program.
®= One of the most profound ideas in computer science
" Not the same as “program” or “processor”

Process provides each program with two key abstractions:

= |Logical control flow — Thread of Control
= Each program seems to have exclusive use of the CPU
= Private virtual address space
= Each program seems to have exclusive use of main memory

How are these lllusions maintained?

" Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system

= More in CS-333 (0S) 16

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data coe Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

Kernel runs many processes simultaneously

Applications for one or more users

= Web browsers, email clients, editors, ...
Background tasks

= Monitoring network & I/O devices

17

Multiprocessing Example

X Xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle

SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27358 total, 1127M resident, 35M private, 434M shared,
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,
YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,
MNetworks: packets: 41046228/11GC in, B6083096/77G out,

Disks: 17874331/3490G read, 12847373/534C written,

PID COMMAND #CPU TIME #TH #l0 #PORT #MREG RPRYT RSHRD
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 21M 24M

33051 usbmuxd 0,0 00:04,10 3 1 47 66 436K 216K
33006 iTunesHelper 0,0 00:01,23 2 1 5 78 728Kk 3124K
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K
84285 xterm 0,0 00:00,83 1 0 32 73 BhEK 872K
99939- Microsoft Ex 0,3 21:58,97 10 3 360 954 16M B5SM

54751 sleep 0,0 00:00,00 1 0 17 20 32K 212K
54739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220K
94737 top 6.5 00:02,53171 0 30 23 1416K 216K
94713 automountd 0,0 00:00,02 7 1 5% B4 860K 216K

m Running program “top” on Mac

= System has 123 processes, 5 of which are active

= |dentified by Process ID (PID)

RSIZE
21M
430K
1124K
434K
632K
46M
360K
1736K
2124K
2184K

A TA

YPRYT
BEM
BOM
43M
17M
3728K
114M
3632K
43M
17M
53M

AL

11:47:07

YSIZE
763M

2422M
2429M
2378M
2382M
1057M
2370M
2403M
2378M
2413M

[P EaTal¥)

18

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
registers | : registers registers
CPU
Registers

A single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= Register values for nonexecuting processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
reqali/s\liers : registers registers
CPU
Registers

m Save current registers in memory

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data cee Data

Code Code Code
Saved Saved Saved
registers registers registers

CPU
Registers

Schedule next process for execution

Multiprocessing: The (Traditional) Reality

Memory

Stack : Stack : Stack

Heap : Heap : Heap

Data : Data L e Data

Code : Code : Code
Saved - | Saved : Saved
registers - Lregisters | registers

CPU
Registers

Load saved registers and switch address space (context switch)

Multiprocessing: Multicore Processors

Memory

Stack Stack Stack

Heap Heap Heap

Data Data cee Data

Code Code Code

Saved Saved Saved
reqisters reqisters reqgisters

CPU CPU " Multiple CPUs on single chip
Registers Registers = Share main memory

(and some of the caches)

® Each can execute a separate

process

= Scheduling of processors onto
cores is done by kernel 23

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):

" Concurrent: A&B,A&C
= Sequential: B& C Process A Process B Process C

Time I

24

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes are
running in parallel with each other

Process A Process B Process C

Time |

25

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

Control flow passes from one process to another via a context
switch '

|
Process A 1 Process B
I
|
I
: user code
- |
Il kernel code } context switch
1 >
I
I l user code
|
I —-—
«- " - kernel code } context switch
user code

26

«—

Concurrent Processes

27

Process C

Process B

Process A

Time

Concurrent Processes

Time

Process A

Process B

Process C

28

“Round-Robin” Process Scheduling

Process A Process B Process C

} context switch

kernel

«—

I
|
I
; I } context switch
: kernel | —1
[|
| |
I kernel I -
i I } context switch
I |
| |
| :
kernel | I } context switch
1 I
I |
I |
I 1 } context switch
I kernel 1|
| |
! ;
1

ker“
29

System Call Error Handling

On error, Unix system-level functions typically return -1 and set
global variable errno to indicate cause.

Hard and fast rule:
You must check the return status of every system-level function
Only exception is the handful of functions that return void

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

30

Error-reporting functions

To simplify...
You can create an error-reporting function:

void unix_error(char xmsg) /* Unix-style error x/

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

Then code this:

if ((pid = fork()) < 0)
unix_error("fork error");

31

Error-handling Wrappers

We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;
if ((pid = fork()) < 0)
unix_error("Fork error");
return pid;
}

Then code this:
pid = Fork();

32

Obtaining Process IDs

pid t getpid(void)

Returns PID of current process

pid t getppid(void)

Returns PID of parent process

33

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

Running
" Process is either executing, or waiting to execute
= Will eventually be scheduled (i.e., chosen to execute) by the kernel

Stopped

" Process execution is suspended and will not be scheduled until
further notice

Terminated
" Process is stopped permanently
34

Terminating Processes

Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate
= Returning from the main routine
= Calling the exit function

void exit(int status)

" Terminates with an exit status of status
= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer
value from the main routine

exit is called once but never returns.

35

Creating Processes

Parent process creates a new running child process by calling
fork

int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

fork is interesting because it is called once but returns twice!

36

Understanding fork

»

»

pid=m

Process n

pid t pid = fork();
if (pid 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid == 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

hello from parent

]
o

pid

»

Which one is first?

Child Process m

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;
}
pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");

} else {
printf ("hello from

}

parent\n") ;

pid t pid = fork();
if (pid == 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

hello from child

37

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child %/
printf("child : x=%d\n", ++Xx);
exit(0):;

}

/*x Parent x/
printf("parent: x=%d\n", --x);
exit(0);

Called once, returns twice

Concurrent execution
= Can’t predict execution
order of parent and child
Duplicate but separate
address space

" x has a value of 1 when
fork returns in parent and
child

= Subsequent changes to x
are independent

Shared open files

linux> ./fork

linux> ./fork

" stdoutisthe samein

hild : x=2
et * both parent and child

parent: x=0

parent: x=0

child : x=2

38

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
= Each vertex is the execution of a statement
" a->b means a happens before b
= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

= Total ordering of vertices where all edges point from left to right

39

Process Graph Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0):;

}

/*x Parent x/
printf("parent: x=%d\n", --x);
exit(0);

childl x=2 .o child

-

printf exit

parent: x=0

—+>@ »® Parent

printf exit

40

Interpreting Process Graphs

Original graph:

child;: x=2

>— —®

printf exit
x==1 parent: x=0

o— —»>@ >@

main fork printf exit
Relabled graph:

>® a

=l e f

- >@ >»®

a b c d

Possible total ordering:

41

fork Example: Two consecutive forks

void fork2()

{

printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

Bye

printf
Bye
—> -0

Bye

L1l
>0— >
printf fork printf
®
printf
L1 ‘ Bye
I£ >0 —>0— —»> >0

printf fork printf

Possible output:
LO

L1

Bye

Bye

L1

Bye

Bye

fork printf

Impossible output:
LO

Bye

L1

Bye

L1

Bye

Bye

42

fork Example: Nested forks in parent

void fork4()
{
printf("LO\n");
if (fork() '= 0) {
printf("L1\n");

if (fork() '= 0) {
printf("L2\n");

}

}
printf("Bye\n");

LO

-

]Eye B¥e

printf F;intf
I G G A

o—

printf fork printf fork printf printf

Possible output:

LO
L1
Bye
Bye
L2
Bye

Impossible output:
LO

Bye

L1

Bye

Bye

L2

43

fork Example: Nested £orks in children

void fork5()

¢ 12 gy
printf("LO\n"); printf printf
if (fork() == 0) { L1 R Bye
printf("L1\n"); printf fork printf
if (fork() == 0) { LO - Bye
printf(“L2\n"); prJ'th fork p£intf
¥
} u
printf(“Bye\n"); Possible output: Impossible output:
} L0 L0
Bye Bye
L1 L1
L2 Bye
Bye Bye
Bye L2

44

exit() system call

void exit (int status)
Terminates the process
Normal return? Exit with status =0
atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit(0) ;

45

Zombies

When process terminates, still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
Living corpse... half alive anod half deadl !

Reaping
= Performed by parent on terminated child

" Parent is given exit status information
= Kernel discards process

What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then child will be
reaped by init process

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

46

Zombie
Example

linux> ./fork7 &
[1] 6639

Running Parent, PID

void fork7() {
if (fork() == 0) {

/* Child *x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /* Infinite loop */
}
} fork7.c
= 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9 00:00:03 fork?7 Ps shows child process as
6640 ttyp9 00:00:00 fork7 <defunct> “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated — Killing parent allows child to be
linux> ps <€ reaped by init
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

47

void fork8()
Non- {
. . if (fork() == 0) {
/* Child %/
termlnatlng printf("Running Child, PID = %d\n",
- getpid());
Child Example e
; /* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> ./fork8 } fork8.c
Terminating Parent, PID = 6675
Running Child, PID = 6676 Child process still active even though
linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork Must kill child explicitly, or else will
6677 ttyp3 OOW keep running indefinitely
linux> kill 6676
linux> ps
PID TTY TIME CMD

6585 ttyp9 00:00:00 tecsh
6678 ttyp9 00:00:00 ps
48

wait: Synchronizing with Children

Parent reaps a child by calling the wait function

int wait(int *child status)
Suspends current process until one of its children terminates

Return value is the pid of the child process that terminated

If child status != NULL, then the integer it points to will be set

to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros definedinwait.h

— WIFEXITED, WEXITSTATIS, WIFSIGNALED,

WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

49

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

HC exit
>o >e
printf

CT

Bye
>o >o o

exit(0);
} else {
printf("HP: hello from parent\n"); |
wait(&child_status); fork
printf("CT: child has terminated\n");
}
printf("Bye\n");
}
Possible output:
HC
HP
CT
Bye

printf wait printf

Impossible output:
HP

CT

Bye

HC

50

Another wait Example

m If multiple children completed, will take in arbitrary order
m Use macros WIFEXITED and WEXITSTATUS to get information about exit
status

void forklo() {
pid_t pid[N];
int i, child_status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0) {
exit(100+1i); /* Child x/
}
for (1 =0; 1 < N; i++) { /* Parent x/
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

51

waitpid: Waiting for a Specific Process

pid t waitpid(pid t pid, int &status, int options)
= Suspends current process until specific process terminates
= Other options (see textbook)

void forkll() {
pid_t pid[N];
int 1;
int child _status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /*x Child */
for (1 = N-1; 1 >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

52

execve: Loading and Running Programs

int execve (

char *filename, Can be object file or script file
char *argv]|], beginning with #! interpreter
char *envp|[] #!'/bin/bash

) #!/usr/bin/python

Loads and runs in current process:
_ By convention
= Executable £filename

‘%”,,——””'argv[0]==filename
= With argument list argv

= And environment variable list envp

Does not return (unless error) \l “name=value” strings

Overwrites code, data, and stack Sec aI‘SJ:_ER=harrY
= keeps pid, open files and signal context ge.tenv
putenv
printenv

53

Structure of
the stack when
a hew program
starts

environ

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n]

NULL

envEln—ll

(global var)

envp
(in $rdx)

argv

envp[0]

argv[argc] = NULL

(in $rsi)

argc
(in $rdi)

1Ly

argv[argc-1]

argv[0]

Stack frame for
libc_start;main

Future stack frame for

Stack bottom

Stack top

54

execve Example

if ((pid = Fork()) == 0) {
if (execve(myargv[@], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);

/* Child runs program x/

exit(1);
}
}
argv[argc] = NULL
argv(argc-1] +—> “ /usr/bin”
> “-1t”
argv[0] —> “1s”
argve >
envp[n] = NULL
envp[n-1] —> “PWD=/usr/smith”
*T—> “PRINTER=fab printer 3”
i envp[0] I—> “USER=smith”
environ® >

95

Linux Environment

LINUX:/u/harry %
LANG=en_US.UTF-8
USER=harry
LOGNAME=harry
HOME=/u/harry
PATH=.:/u/harry/Desktop/Blitz/BlitzTools:/u/harry/bin:/usr/local/sbin:/usr/local/
bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/local/bin
MAIL=/var/mail/harry

SHELL=/bin/csh

SSH_CLIENT=172.30.5.96 53480 22

SSH_CONNECTION=172.30.5.96 53480 131.252.208.85 22

SSH_TTY=/dev/pts/9TERM=vt102
XDG_SESSION_COOKIE=46af7143704ca67c¢395¢cc5955416d4d69-1432846022.328694-390702012
XDG_SESSION ID=129

XDG_RUNTIME_DIR=/run/user/5031

ICEAUTHORITY=/tmp/.harry ICEauthority

HOSTTYPE=x86_ 64-linux

VENDOR=unknown

OSTYPE=linux

MACHTYPE=x86_64SHLVL=1PWD=/u/harry

GROUP=facultyHOST=ruby

REMOTEHOST=172.30.5.96

UPKGCFG=/u/harry/.pkglist 56

printenv

Summary

m Exceptions

= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on a single core, though

= Each process appears to have total control of
processor + private memory space

57

Summary (cont.)

m Spawning processes
= Call fork
® One call, two returns
m Process completion
" Callexit

" One call, no return

m Reaping and waiting for Processes
" Callwaitorwaitpid

m Loading and running Programs
" Call execve (or variant)

= One call, (normally) no return

58

