Cache Memories

Sections 6.4-6.6

Outline

Cache memory organization and operation
Performance impact of caches

" The memory mountain
= Rearranging loops to improve spatial locality
= Using blocking to improve temporal locality

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),

then in main memory.

m Typical system structure:

CPU chip
Register file
Cache <—> I_'\
memories <:_|

10 J%

ALU|

Bus interface

1o
; bridge

System bus

Memory bus

—_—

Main
memory

Intel Core i7 Cache Hierarchy

(shared by all cores)

Processorpackage =~
' Core 0 Core 3

Regs Regs

| L1 L1 L1 L1

| d-cache| | i-cache d-cache| | i-cache

| L2 cache L2 cache

L3 cache

Main memory

L1 i-cache and d-cache:
32 KB
Access: 4 cycles

L2 cache:
256 KB
Access: 11 cycles

L3 cache:
8 MB
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

Intel Core i

i

i

1

controlles

including
Display;

DMl and

Misc. [/0 =

f -
I e L
L s _
o LN |
AT

DL
/, » 83

i,l

e e A o o N G o e 1

OVERCLOOCKERSCL U

!

if L

o
&

il
e Chn

o
~
(=
L
O
e
gl
c
O¢
& F
.
e
o
Q

“Normal” Memory

m Each line (e.g., byte, word) has unique address.
m The addresses are not actually stored in the memory.

Addr Data

111 001 1101
1108010 0001
101 101 1110
1008001 0011

Addr In | >o1ibiooorios] | > Data Out

010 010 1101
001 110 0011
000 111 0010

Associative Memory

m Key is supplied to all “lines” at once.
m Each line compares its key in parallel.
m Matching line outputs its data.

Key Data

00101101
01010001
10101110
00110011
10001100

KeyIn | ﬂ > Data Out

Associative Memory

m Key is supplied to all “lines” at once.
m Each line compares its key in parallel.
m Matching line outputs its data.

Key Data

00101101
01010001
10101110
00110011
10001100

KeyIn | ﬂ > Data Out

1110

Associative Memory

m Key is supplied to all “lines” at once.
m Each line compares its key in parallel.
m Matching line outputs its data.

Key Data

00101101

01010001

10101110

00110011

10001100

> Data Out

Associative Memory

m Key is supplied to all “lines” at once.
m Each line compares its key in parallel.
m Matching line outputs its data.

Key Data

00101101

01010001

10101110

00110011

10001100

> Data Out

10

Associative Memory

m Key is supplied to all “lines” at once.
m Each line compares its key in parallel.
m Matching line outputs its data.

Key Data

00101101

01010001

10101110

00110011

10001100

> Data Out

11

Associative Memory

m Key is supplied to all “lines” at once.

m Each line compares its key in parallel.

m Matching line outputs its data.

Key

Data

00101101

01010001

10101110

00110011

10001100

> Data Out

12

Associative Memory

m Key is supplied to all “lines” at once.

m Each line compares its key in parallel.

m Matching line outputs its data.

Key

Data

00101101

01010001

10101110

00110011

10001100

> Data Out

01010001

13

Example: Fully Set-Associative Cache

Typical:
m 64 bytes per line (B = Block size)

m 32 Kbytes per cache (C = cache size in bytes)
m 512 lines (=C/B)

Fully Set-Associative:

S = Number of sets =1

Any block can go into any line in the cache memory
(See previous slide)

14

Fully Set-Associative Cache:
Any block can go into any line in the cache memory

Key (26 bits) Block size = 64 bytes
N

00101101

512[ines< 01010001

_ 10101110
in the cache 00110011 ™~ (Not all bits shown)

_ 10001100

32-bit Address
Key (26 bits) Addr of byte within block

A
- N\
1010 0011 1101 0001 0010 1010 0001 0101

Fully Set Associative Cache

Set-associative memory

E lines per set < cache line

key data “block”

16

Direct-Mapped Cache:

Each block can only go in one line of cache memory

Tag (17 bits) Block size = 64 bytes

/‘/\f A N

110
\111

(ooo 0010000101101
0O01§1110§01010001
0101010101011 10
512/ines<o11 0101100110011
inthe cache)\ 100J0001§10001100
101§J1010§01101110
0111§J01101110
001110010010

™~ (Not all bits shown)

32-bit Address Index Addr of byte

Tag (17 bits) (9 bits) within block
A AL

- N N\
1010 0011 1101 0001 0010 1010 0001 0101

Direct-Mapped Cache
Look at the address
Use the index to find the right line in the cache
Read the line
Compare tag of the cache line to tag in the address
Same — Cache Hit
Different - Cache Miss
Assuming a hit...
Get the block from the cache
Use the offset within the block to find the right byte(s)

32-bit Address Index Addr of byte
Tag (17 bits) (9 Bits) within block

‘. s Y& \
1010 0011 1101 0001 0010 1010 0001 0101

Direct-Mapped Cache:

Each block can only go in one line of cache memory

32-bit Address Index
(9 bits)
AL

(. N\
010 1010 00

Direct-Mapped Cache:

Each block can only go in one line of cache memory

010§1010p10101110

512 lines <
in the cache

32-bit Address Index

(9 BES)

(. N\
010 1010 00

Direct-Mapped Cache:

Each block can only go in one line of cache memory

Tag (17 bits)

—

010§41010p10101110

512 lines <
in the cache

32-bit Address Index

Tag (17 bits) (9 bits)
A A

- N N\
1010 0011 1101 0001 0010 1010 0O

Direct-Mapped Cache:

Each block can only go in one line of cache memory

Tag (17 bits)

—

010§41010p10101110

512 lines <
in the cache

32-bit Address Index Addr of byte

Tag (17 bits) (9 bits) within block
A AL

- N N\
1010 0011 1101 0001 0010 1010 0001 0101

Direct-Mapped Cache:

Each block can only go in one line of cache memory

Tag (17 bits)

—

010§1010p10101110

512 lines <
in the cache

32-bit Address Index Addr of byte

Tag (17 bits) (9 bits) within block
A AL

- N N\
1010 0011 1101 0001 0010 1010 0001 0101

Cache Memory: The General Form

Combines features of both
m Set-Associative Cache
m Direct-Mapped Cache
Many small associative memories
Each associative memory contains several lines
To access the cache:
" ook at the address; look at the index bits

= Use that them find the right associative memory
" Use the tag as the key into the associative memory

24

General Cache Organization

Set-associative memory

E lines per set < Cache line

key

25

General Cache Organization

E lines per set
A

set

26

General Cache Organization

E lines per set
A

set

SSGtS< R

General Cache Organization

E lines per set
A

- ~ set
. «
SSEtS< eooe
. eceoe

/ — —
—

valid bit B = bytes per cache block

28

General Cache Organization
Cache size: C=S x E x B data bytes

E lines per set
A

set

SSEtS< R

J v tag
/ — 7

valid bit B = bytes per cache block

29

General Cache Organization
Cache size: C=S x E x B data bytes

E lines per set
A

p ~ set
r —
00000 D OCU
00001 oo
S sets < 00010 eoco0o0
11111 PP
i
index
J v tag
/ — __/
e
valid bit B = bytes per cache block

30

To Access a Byte of Data

Look at the address; look at the index bits

Use them to find the right associative memory
Use the tag as a key into the associative memory
Retrieve a cache line

Check the valid bit.

Does this line contain valid data?

Lines per set: E

Sets in the cache: S=2°
Bytes in each block: B = 20

Address of the data:
t bits s bits b bits
- ~ A ~ '\ ~ _/

tag set index block offset

General Cache Organization (S, E, B)

$=2¢ sets<

E = 2¢ lines per set

Cache size:
C =S x E x B data bytes

- A
coee
cooe
coee
cececsscccessssscessccseesee
coee
[1ol 51
valid bit ~——

B = 2b bytes per cache block (the data) 32

Cache Read

E = 2¢ lines per set

A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting

-
r at offset
o000
Address of word:
oo t bits s bits | b bits
e — A
S = 2% sets < XXX tag set block
index offset
OO0 0000000000000 00OCOCEOGCEOGEOGEOSOEOSOSOO
o000
\.
data begins at this offset
v tag 112 oc-- B-1
valid bit ~— —

B = 2° bytes per cache block (the data)

33

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S$=2 sets<

tag 0]1112)13]14]|5]6

Address of int:

t bits 0..01

100

tag 0]1112)13]14]|5]6

tag 0]1112)13]14]|5]6

tag 0]1]1|2]3]|4]5]6

find set

34

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

v tag 0j1|2(|3]14]|5

t bits

0..01

100

block offset

35

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

v tag 0|l1]2]|3|4]|5]|6]|7

int (4 Bytes) is here

No match: old line is evicted and replaced

block offset

Direct-Mapped Cache Simulation

t=1 s=2 _b=1 M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set1l
Set 2
Set3 | 1 0 M[6-7]

37

A Higher Level Example

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array cols(double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (1 = 0; i < 16; i++)
sum += a[i] [j];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

v
|\ J
Y
32 Bytes = 4 doubles
blackboard

38

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

v| | tag | [0]1]2]3]4]5]6]7

tag |

thits | 0..01 | 100
'/ tag | |0]1]213]4]|5]6]7 tag 5|/6]7
v] [tag | [o]a]2]3]a]5]6]7 tag | 567 find set
'/ tag | |0]1]213]4]|5]6]7 tag 5|/6]7

39

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

valid? + | match: yes = hit

compare both

t bits

0..01

100

v| [_tag | |of1]2]3]4

6171 |lv] | tag | [o]2]2]3

block offset

40

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| |_tag | |of1]2{3]afs]67]| |[v] [tag] [0]2]2]3]4]5]6]7

block offset

short int (2 Bytes) is here

No match:
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ... 41

2-Way Set Associative Cache Simulation

t=2

s=1

b

1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0

O 0O N =

Vv

Tag

[0000,], miss

[0001,), hit

[0111,], miss

[1000,], miss

[0000,] hit
Block

seto |L__[00 | Mm[0-1]
1|10 |M[89

Set1l

01

M[6-7]

ofr

42

A Higher Level Example

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (1 = 0; i < 16; i++)
sum += a[i] [j];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

v

(G J
hd

32 B =4 doubles

blackboard

43

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

44

Intel Core i7 Cache Hierarchy

L1

Processorpackage =~
Core 0 Core 3
Regs Regs
L1 L1 L1
d-cache| | i-cache d-cache

L2 unified cache

i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

45

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycles for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

46

Lets think about those numbers

Huge difference between a hit and a miss

Could be 100x, if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?

Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

Average access time? Look at 100 accesses...
99% hits: 99 x 1 cycle + 1 x 100 cycles = 199 cycles = ~ 2 cycles/access
97% hits: 97 x 1 cycle + 3 x 100 cycles = 397 cycles = ~ 4 cycles/access

This is why “miss rate” is used instead of “hit rate”

47

Writing Cache Friendly Code

m Make the common case go fast

® Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

48

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

49

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse x/

/* test - Iterate over first "elems" elements of

* array “data” with stride of "stride", using
* using 4x4 loop unrolling.
*/

int test(int elems, int stride) {
long i, sx2=stridex2, sx3=stridex3, sx4=stridex4;
long accO = 0, accl = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time x/
for (1 =0; 1 < limit; i += sx4) {

accO = accO + data[i];

accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements x/
for (; i < length; i++) {
accO = accO + data[il;

}

return ((acc@ + accl) + (acc2 + acc3));

} mountain/mountain.c

Call test () with many
combinations of elems
and stride.

For each elems
and stride:

1. Call test()
once to warm up
the caches.

2. Call test()
again and measure
the read
throughput (MB/s)

50

32 KB L1 d-cache

The Memory Mountain 256 KB L2 cache

8 MB L3 cache

Aggressive All caches on-chip

Intel Core i7 Haswell

prefetching
16000

Read throughput (MB/s)
S
o
o
o

8000 Ridges
6000 of temporal
locality

4000

2000
Slopes
of spatial
locality 128K

s5 - 512k
Stride (x8 bytes) » 3om Working set size (bytes)

51

Matrix Multiplication Example

Description:

Multiply N x N matrices
Each element is a double
O(N3) total operations

N reads per source
element

N values summed per
destination

...but may be able to
hold in register

3

Variable sum

/* i3k */ held in register
for (i=0; i<n; i++) {
for (j=0; j<n; j++) { //

sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][]j];
c[i][J] = sum;

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

® Look at access pattern of inner loop

53

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order
= Each row stored in contiguous memory locations
Stepping through columns in one row:
for (i = 0; i < N; i++)
sum += a[0][i];
accesses successive elements
= if block size (B) > 8 bytes, exploit spatial locality
miss rate = 8 bytes / B
Stepping through rows in one column:
for (i = 0; 1 < n; 1i++)
sum += a[i] [0];
accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

54

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { i
sum = 0.0; g(i'*) (i
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[3j];

c[i][j] = sum; ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

55

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i

sum = 0.0; L;;;J _ ﬁ]iﬁ: (ﬁn
for (k=0; k<n; k++) (i,*)

sum += a[i] [k] * b[k][3]; A B

c[i][3] = sum ‘ ‘ ‘
)

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

56

Matrix Multiplication (kij)

kLI Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) ({ (i,k) :(k'*)g
r = a[i] [k]; . (i,%)
for (j=0; j<n; j++) A B C
c[i] [J] += r * b[k][]]~ ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

57

Matrix Multiplication (ikj)

/* ikj */
. : : Inner loop:
for (i=0; i<n; i++) {
for (k=0; k<n; k++) ({ (i,k) :(k'*)g
r = a[i] [k]; O (i,*)
for (j3=0; j<n; j++) A B C
c[i] [J] += r * b[k][]]: ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

58

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j3j=0; j<n; j++) { (* k) * 1)
for (k=0; k<n; k++) { (k.j)

r = b[k][]]: ” o H
for (1i=0; i<n; i++) A B C
c[i]l[j] += a[il[k] * r; ‘ ‘

Column- Fixed Column-

wise wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

59

Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; J++) {
r = b[k][]]’

for (i=0; i<n; i++)

c[i] [J] += a[i]l[k] * r;

Inner loop:

nil

A

|

Column-
wise

Misses per inner loop iteration:

A B

1.0 0.0

C

1.0

(k,j)
[

B

|

Fixed

C

|

Column-

wise

60

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]I[j];
c[i] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]3]~
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][J];
for (i=0; i<n; i++)
c[i]l[3] += al[il[k] * r;

Summary of Matrix Multiplication

ijk (& jik):
e 2 loads, O stores
* misses/iter = 1.25

kij (& ikj):
¢ 2 |loads, 1 store
e misses/iter = 0.5

jki (& kiji):
e 2 |loads, 1 store
* misses/iter = 2.0

61

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100

10

50

100

150

NI
K

iki / ki

- jki
B ki
—¢ijk
- jik
——kij
—iKj

200

b+

250

s
ot
pag
p

300 350 400 450
Array size (n)

b+

-t
b
b
b

62

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

I
*

63

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration:
" n/8+n=9n/8 misses

= Afterwards in cache:
(schematic)

8 wide

64

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Second iteration:
= Again:
n/8 + n =9n/8 misses

m Total misses:
" 9n/8 * n2=(9/8) * n3

8 wide

65

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl1l] += a[il*n + kl1l]*b[kl*n + jl];

1
*
+

i1

I

Block size Bx B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block M

= 2n/B * B2/8 =nB/4
(omitting matrix c)

= Afterwards in cache []
(schematic)

n/B blocks

~N

— NN \

Block size B x B

67

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m Second (block) iteration:
= Same as first iteration
= 2n/B * B2/8 =nB/4

m Total misses:
" nB/4 * (n/B)? =n3/(4B)

n/B blocks

Block size B x B

68

Summary

No blocking: (9/8) * n3
Blocking: 1/(4B) * n3

Suggest largest possible block size B, but limit 3B < C!

Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

69

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
" Focus on the inner loops, where bulk of computations and memory
accesses occur.
" Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

70

Concluding Observations

m Programmer can optimize for cache performance
= How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache ssizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

71

