Computer
Systems
Organization

Outline

gcc — The Compiler Driver
cpp — The Preprocessor
The Virtual Address Space
Linking
The Operating System

m The File System

m Processes
m The Memory Hierarchy

Program Execution

A software view

User
Interface
1 Users
Library
interface Standards utility programs T
l (shell, editors, compliers etc)
System User
call mode
interface Standard library
* (open, close, read, write, fork, etc) l

UNIX operating system
(process management, memory management,
the file system, 1/O, etc)

A

Kernel mode

{

Hardware
(CPU, memory, disks, terminals, etc)

How it works

hello.c program

#include <stdio.h>
int main() {
printf ("hello, world\n");

The gcc compilation system

gcc is a compiler driver

gcc is a script program

gcc invokes the compilation phases
m Preprocessor
m Compiler
m Assembler
m Linker

The gcc compilation system

‘ hello.c (source code)

hello.i (modified source)

hello.s (assembly code)

! hello.o (object file)
! hello (executable)

The Preprocessor: cpp

First step: gcc compiler driver invokes cpp

Output is expanded C source
cpp does text substitution

m Converts the C source file to another C source file
m Expands

#define

#include

#if...
= Output is another C source file

The Preprocessor: cpp

Included files:
#include <foo.h>
#include "bar.h"

Defined constants:

#define MAXVAL 40000000
By convention, all capitals tells us it’s a constant, not a variable.

Macros:
#define MY MULT (x,y) ((x)*(y))
#define MIN(x,y) ((x)<(y) ? (x):(y))
#define RIDX(i, j, n) ((1) * (n) + (3))

Macros

Defined constants: Whitespace required

#define MAXVAL 40000000

Whitespace forbidden
Macros:

define MY MULT (x,y) ((x)*(y))

Input to cpp:
a = MY MULT (b+c,d-foo(17));

Input to compiler:
a = ((bt+c)*(d-foo(17)));

Macros - Why the parens?

Defined constants: Whitespace required

#define MAXVAL 40000000

Whitespace forbidden
Macros:

#define MY MULT (x,y) (x *y)

Input to cpp:
a = MY MULT (b+c,d-foo(17));

Input to compiler:
a= (b+tc * d-foo(17));

10

Macros — Just Textual Substitution

Macros:
#define WACKY MAC(x,v,z) x 4y z;

Input to cpp: > Perfectly Okay
a = arr [WACKY MAC(b*,]+,c)

Substituting:

a=arr [x 4 vy z ;

Input to compiler: / No syntax error, after all!
a=arr [b* 4 1+ c ;
a = arr[b*4] + c ;

11

Conditional Compilation

Conditional compilation:

#ifdef .. or #if defined(..)
#endif
Code you think you may need again (e.g. debug print
statements)

Include or exclude code based on #define/#ifdef
More readable than commenting code out

Portability
Compilers have “built in” constants defined
Operating system specific code

#if defined(_ i386) || defined(WIN32) || ..

Compiler-specific code
#if defined(INTEL COMPILER)
Processor-specific code

#if defined(SSE)

12

Compiler

Next, gcc compiler driver invokes cc to generate
assembly code

Translates C source code into assembly code.
Variables: mapped to memory locations and registers.

Logical and arithmetic operations: mapped to underlying machine
opcodes

Assembler

Next, gcc compiler driver invokes as to generate object
code

Translates assembly code into binary object code that can be
directly executed by CPU

13

Linker

Finally, gcc compiler driver calls linker (Ild) to generate
executable
Combine:
* One or more object files.
 Functions from (static) libraries, as needed.
Create:

e The executable file Libraries

libc.a

hello.o there.o

v

Linker (Id)

}

hello The executable file

14

The gcc compilation system

‘ hello.c (source code)

hello.i (modified source)

hello.s (assembly code)

! hello.o (object file)
! hello (executable)

15

GCC variations

Stop after the preprocessor
gcc -E hello.c

Stop after the C compiler
gcc -S hello.c

Stop after the assembler

gcc -c hello.c

Go all the way default is a.out
gcc hello.c(-o greeting)"”””””

16

GCC variations

Stop after the preprocessor default is hello.i

gcc -E hello.c(—o greeting.i

Stop after the C compiler

default is hello.s
gcc -S hello.c(-o greeting.s)A/ f

Stop after the assembler

default is hello.o
gcc -c hello.c(-o greeting.o

Go all the way default is a.out
gcc hello.c(-o greeting)/

17

GCC variations

Stop after the preprocessor default is hello.i

gcc -E hello.c(—o greeting.i

Stop after the C compiler

default is hello.s
gcc -S hello.c(-o greeting.s)A/ f

Stop after the assembler

default is hello.o
gcc -c hello.c(-o greeting.o

Go all the way default is a.out
gcc hello.c(-o greeting)/

The extension tells where to start

gcc hello.c Begin with the preprocessor

gcc hello.i Begin with the compiler
gcc hello.s Begin with the assembler
gcc hello.o Begin with the linking

18

GCC variations

Print all warnings:
gcc -Wall hello.c

Produce an assembler listing & stop:
gcc -Wa,-alh hello.c -c

Optimize the code:
gcc -01 hello.c

Include info for gdb and don’t optimize too much:
gcce -g -0g hello.c

Compile for 32-bits or 64-bits:

gcc -m32 hello.c
gcc -m64 hello.c

19

The Virtual Address Space

What goes into memory?

FFFFFFFF

000000000

20

The Virtual Address Space

What goes into memory?
Program Code

machine code instructions

FFFFFFFF

000000000

Program Code

21

The Virtual Address Space

What goes into memory?
Program Code

machine code instructions

Constants
never modified

FFFFFFFF

000000000

Constants

Program Code

22

The Virtual Address Space

What goes into memory?
Program Code

machine code instructions

Constants
never modified

Data
global variables

FFFFFFFF

000000000

Data

Constants

Program Code

23

The Virtual Address Space

What goes into memory?
Program Code

machine code instructions

Constants

never modified
Data

global variables
Stack

to hold stack frames

FFFFFFFF

000000000

]

Data

Constants

Program Code

24

The Virtual Address Space

What goes into memory?

Program Code
machine code instructions

Constants

never modified
Data

global variables
Stack

to hold stack frames
Heap

memory allocations

FFFFFFFF

000000000

]
_—

Data

Constants

Program Code

25

The Virtual Address Space

What goes into memory?
Program Code

machine code instructions
Constants

never modified
Data

global variables
Stack

to hold stack frames
Heap

memory allocations
Other Stuff

memory-mapped pages

FFFFFFFF

000000000

Data

Constants

Program Code

26

The Virtual Address Space

What goes into memory?

Program Code
machine code instructions

Constants
never modified

Data
global variables

Stack
to hold stack frames

Heap

FFFFFFFF

memory allocations .data segment

Other Stuff
memory-mapped pages

text segment

000000000

Data

Constants

Program Code

27

The Executable File
What is in an ELF file?

text segment

The read-only bytes
.data segment

The read-write bytes
Header info

Where to put the segments
Start address

Additional Info
Info for gdb (optional)

FFFFFFFF

.data segment

text segment

000000000

Additional Info

Read-Write

Read-Only

Header

28

Why Link?

m Program is composed of smaller source files,
rather than one monolithic mass.

= Build one big library containing all common functions
libc.a (Standard C Library); libm.a (Math Library)

= Quicker Program Build
Change one source file, compile, and then relink.
No need to recompile other source files.

m Programs contain only the functions they actually use
Smaller executable files; less runtime memory usage

m Many useful functions collectd into a single library file
The library is used by all programs

29

The linking process (ld)

Merges multiple relocatable (.0) object files into a single
executable program.

Resolves external references

External reference: reference to a symbol defined in another
object file.

Ensures each symbol is uniquely defined

30

The Linking Process

Header

text

Header

.data

Additional Info

text

Header

text

.data

Additional Info

.data

Additional Info

31

Resolving External References

Header
—° _text
_» .data

Additional Info

\

Header

text

[

%

.data

Additional Info ‘

Header

text

¥)

D

.data

Additional Info ‘

32

Example Virtual Address Space

This is what the program “sees”

Oxffffffff

0xc0000000

0x40000000

0x08048000
0x00000000

Memory used by the
kernel for this process

e
stack

invisible to
user code

v

memory mapped region for
shared library functions

1

<+— 3rsp (stack pointer)

shared by other
processes

run-time heap
(managed by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

<+—Dbrk

loaded from the
executable file

33

Libraries and Linking

Two types of libraries

Static libraries
Library of code that linker copies into the executable at
compile time
Dynamic shared object libraries

The function is loaded at run-time by system loader upon
execution

34

Three Kinds of Object Files (Modules)

Relocatable object file (. o file)
Contains code and data in a form that can be combined with
other relocatable object files to form executable object file.
Each .o file is produced from exactly one source (. c) file

Executable object file (a. out file)
Contains code and data in a form that can be copied directly
into memory and then executed.

Shared object file (.so file)
Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-

time.
Called Dynamic Link Libraries (DLLs) by Windows

35

The Complete Picture

main.c foo.c
Translators Translators
(cc1, as) (cc1, as)
.1' l' libwhatever.a
ma:.n\.c: foin .0 /
Linker (Id)
l' Shared library of dynamically
Partially linked executable myprog relocatable object files
(on disk) l libc.so libm.so

Loader / Dynamic Linker

: libc. so functions called by
(Id-linux.so)

main.c and foo.c are loaded,
linked, and (potentially) shared
among processes.

Fully linked executable v
(in memory) nyprog 36

The Operating System

Programs run on top of operating system

OS implements
m File system
= Memory management
m Processes
m Device management
m Network support
m etc.

37

Operating system functions

Protection
m Protects the hardware/itself from user programs
m Protects user programs from each other
m Protects files from unauthorized access

Resource allocation
= Memory, I/O devices, CPU time, space on disks

38

Operating system functions

Abstract view of resources

m Files - an abstraction of storage devices

m System Calls - an abstraction for OS services

m Virtual memory—-> a uniform memory space for each process
Gives the illusion that each process has entire memory space

m A process - an abstraction for a virtual computer
“Timeslicing” — Dividing CPU time into pieces
Each program gets a slice of time
All programs make progress, but only when they “have” the CPU

Each program must wait when other programs are executing

39

Unix file system

Key concepts

Everything is a file.
® Keyboards, mice, CD-ROMS, disks, modems, networks, pipes,
sockets

® One abstraction for accessing most external things

A file is a stream of bytes with no other structure.

Higher levels of structure are an application concept, not an
operating system concept

40

Unix file systems

Managed by OS on disk
m Dynamically allocates space for files
= Implements a name space so we can find files
m Hides where the file lives and its physical layout on disk
m Provides an illusion of sequential storage

All we have to know to find a file is its name

41

Process abstraction

A fundamental concept of operating systems.

A process is an instance of a program when it is running.
A program is a file on the disk containing instructions to execute
* A recipe for cookies

A process is an instance of that program loaded in memory and
running

e The act of baking a particular batch of cookies

A process includes:
m Code and data in memory
m CPU state
m Open files
m Thread of execution

42

How does a program get executed?

The operating system creates a process.
® Including a virtual address space

System loader reads executable from file system and
loads into memory

m Already includes statically linked library functions

System loader loads dynamic shared objects/libraries
into memory

Then it starts the thread of execution running
m Registers & Stack are initialized
m The thread is scheduled (Jump to the starting addresses)

43

Loading Executable Binaries

Executable object file for
example program p

ELF header

Program header table
(required for executables)

Process image

text section

init and shared lib
segments

.data section

.bss section

.symtab

. text segment
(r/o)

.rel.text

.rel.data

.debug

.data segment
(initialized r/w)

Section header table
(required for relocatables)

.bss segment
(uninitialized r/w)

Virtual addr

0x080483e0

0x08048494

0x0804a010

0x0804a3b0

44

Where are programs loaded in memory?

To start with, imagine a primitive operating system.
= Only one process at a time
= Physical memory addresses go from zero to N.

The problem of loading is simple
= Load the program at address zero
= Use as much memory as it takes.
= Linker binds the program to absolute addresses
Code starts at zero
Data concatenated after that

45

Where are programs loaded, cont’d

Next imagine a multi-tasking operating system on a primitive
computer.

m Physical memory space, from zero to N.

m Applications share space

= Memory allocated at load time in unused space

m Linker does not know where the program will be loaded

m Binds together all the modules, but keeps them relocatable

How does the operating system load this program?
m Not a pretty solution, must find contiguous unused blocks

How does the operating system provide protection?
m Not pretty either

6 Sorry, a system error occurred.

46

Where are programs loaded, cont’d

Next, imagine a multi-tasking operating system on a
modern computer, with hardware-assisted virtual
memory

The OS creates a virtual memory space for each user’s
program.
m As though there is a single user with the whole memory all to
itself.

Now we’re back to the simple model
m The linker statically binds the program to virtual addresses

m At load time, the operating system allocates memory, creates
a virtual address space, and loads the code and data.

47

Modern linking and loading

Dynamic linking and loading
= Single, uniform, “flat” VM address space

m But, code must be relocatable again
® Many dynamic libraries, no fixed/reserved addresses to map
them into
® As a security feature to prevent predictability in exploits
(Address-Space Layout Randomization)

48

The memory hierarchy

Operating system and CPU memory management unit
gives each process the “illusion” of a uniform,
dedicated memory space

m i.e. 0x0 — OXFFFFFFFF for 1A32
m Allows multitasking
m Hides underlying non-uniform memory hierarchy

49

Memory heirarchy motivation

In 1980

m CPUs ran at around 1 mHz.
= A memory access took about as long as a CPU instruction
= Memory was not a bottleneck to performance

Today

m CPUs are about 3000 times faster than in 1980
= DRAM Memory is about 10 times faster than in 1980

We need a small amount of faster, more expensive
memory for stuff we’ll need in the near future

= How do you know what you’ll need in the future?

m Locality
m L1, L2, L3 caches

50

The memory heirarchy

Smaller -
Fastor Registers

More Expensive L1 Level 1 Cache
On Chip

L2 Level 2 Cache
(off chip)

Larger
Slower L3 .
Cheaper Main Memory

\

L4 / Local Secondary Storage
\ 4

\

L5/ Remote Secondary Storage

\

51

Hardware organization

The last piece...how does it all run on hardware?

CPU
Register File Memory BUS
PC
| ALU System Bus
ﬁ Main
Bus Interface /0 Bridge <> Memory
AN

< u u /0 Bus u

USB Graphics Disk
Controller Controller === Controller

>

52

Summary using hello.c

1. Shell process running, waiting for input

CPU
Register File Memory BUS
PC
| ALU System Bus
ﬁ Main
Bus Interface /0 Bridge <> Memory
N\

< u u /O Bus u >

USB Graphics Disk
Controller Controller === Controller

53

Summary using hello.c

3. Command read into registers

4. Before sent to main memory before being read by
shell process

CPU
Register File Memory Bus

PC

ALU System Bus

Main

/O Bridge < ———> Memory
A

/O Bus u >
USB Graphics Disk
Controller Controller === Controller

2. User types ./hello

[]

Bus Interface

54

Summary using hello.c

5. Shell process creates new process through
OS and initiates DMA of hello executable from

disk to main memory

CPU
Register File Memory BUS
PC
. ALU System Bus
ﬁ Main
Bus Interface I/O Bridge Memory
N\
< 1/0

& U

USB Graphics
Controller Controller

4

Disk
Controller

>

—8

Summary using hello.c

6. CPU executes hello code from
main memory
CPU

Register File Memory Bus

PC

ALU System Bus

[]

Bus Interface

Main

/O Bridge < ———> Memory
A

u u /O Bus u >
USB Graphics Disk
Controller Controller === Controller

<

56

Summary using hello.c

7. CPU copies string “hello, world\n”
from main memory to display

CPU
Register File Memory Bus
PC
| ALU System Bus
ﬁ Main
Bus Interface idge <——> Memory

<

USB Graphics Disk
Controller Controller === Controller

57

