The Standard C Library



The C Standard Library

Common functions we don’t need to write ourselves
A portable interface to many system calls

Analogous to class libraries in Java or C++

Function prototypes declared in standard header files
Must include the appropriate “.h” in source code

#include <stdio.h> #include <stddef.h>
#include <time.h> #include <math.h>
#include <string.h> #include <stdarg.h>

#include <stdlib.h>
“man 3 printf”’ shows which header file to include

K&R Appendix B describes the functions

Code linked in automatically
At compile time (if statically linked, gcc -static)

At run time (if dynamically linked)
Use “ldd” command to list dependencies



The C Standard Library

/O stdio.h

printf, scanf, puts, gets, open, close, read, write,
fprintf, fscanf, fseek,
Memory and string operations string.h

memcpy, memcmp, memset,
strlen, strncpy, strncat, strncmp,
strtod, strtol, strtoul,

Character Testing ctype.h
isalpha, isdigit, isupper,
tolower, toupper,

Argument Processing stdarg.h

va list, va start, va arg, va end,



The C Standard Library

Utility functions stdlib.h

rand, srand, exit, system, getenv,

malloc, free, atoi,
Time time.h
clock, time, gettimeofday,
Jumps setjmp.h
setjmp, longjmp,
Processes unistd.h
fork, execve,
Signals signals.h
signal, raise, wait, waitpid,

Implementation-defined constants limits.h, float.h
INT MAX, INT MIN, DBL MAX, DBL MIN,



Formatted Output

int printf (char *format, ..)
Sends output to standard output

int fprintf (FILE *stream, char *format, ..);
Sends output to a file

int sprintf (char *str, char *format, ..)
Sends output to a string variable

Return Value: The number of characters printed
(not including trailing \0)

On Error: A negative value is returned.




Formatted Output

The format string is copied as-is to output.
Except the % character signals a formatting action.

Format directives specifications
Character (%c), String (%s), Integer (%d), Float (%f)
Fetches the next argument to get the value

Formatting commands for padding or truncating output and for
left/right justification

%10s - Pad short string to 10 characters, right justified
%-10s - Pad short string to 10 characters, left justified
%.10s - Truncate long strings after 10 characters
%10.15s - Pad to 10, but truncate after 15, right justified

For more details: man 3 printf



Formatted Output

#include <stdio.h>

int main() {
char *p;
float £;

p
4

909.2153258;

printf(":%10.15s:\n"
printf(":%$15.10s:\n"
printf(":%0.2f:\n",

printf(":%15.5f:\n",

return 0;

"This is a test”;

right justified, truncate to 15, pad to 10
right justified, truncate to 10, pad to 15
Cut off anything after 2nd decimal, no pad

Cut off anything after 5th decimal, pad to 15

% test printf example
:This 1s a test:

: This is a
:909.22:;
909.21533:

%




Formatted Input

int scanf (char *format, ..)
Read formatted input from standard input

int fscanf (FILE *stream, const char *format,
Read formatted input from a file

int sscanf (char *str, char *format, ..)
Read formatted input from a string

Return value: Number of input items assigned.

Note that the arguments are pointers!




Example: scanf

#include <stdio.h>

int main()

{

int x;

scanf ("%d", &x);

printf("%d\n", x);
}

Why are pointers given to scanf?



Example: scanf

#include <stdio.h>

int main()

{

long x;

scanf ("%1d", &x);

printf("%$1d\n", x);
}

Why are pointers given to scanf?

10



Input Error Checking

#include <stdio.h>
#include <stdlib.h>
int main() {
int a, b, Cc;
printf ("Enter the first value: ");
if (scanf("° ",&a) == 0) {
perror ("Input error\n");
exit (255);

}
printf ("Enter the second value: ");
if (scanf("°d" &b) == 0) {
perror ("Input error\n");
exit (255);
}
c = a + b;
printf ("%d $d = 3d\n", a, b, c);
return O;
} OUTPUT:

(o)

% test scanf example

Enter the first value: 20

Enter the second value: 30
20 + 30 = 50

3

11



Line-Based I/O

int puts(char *line)
Outputs string pointed to by 1ine followed by newline character to
stdout

char *gets (char *s)
Reads the next input line from stdin into buffer pointed to by s

Null terminates

char *fgets(char *s, int size, FILE * stream)
“size” is the size of the buffer.
Stops reading before buffer overrun.
Will store the \n, if it was read.

int getchar ()
Reads a character from stdin
Returns it as an int (0..255)
Returns EOF (i.e., -1) if “end-of-file” or “error”.

12



General 1/O

Direct system call interface
open () =returns an integer file descriptor
read (), write () =takes file descriptor as parameter

close () = closes file and file descriptor

Standard file descriptors for each process
Standard input (keyboard)
stdin (i.e., 0)
Standard output (display)
stdout (i.e., 1)
Standard error (display)
stderr (i.e., 2)

13



Error handling

Standard error (stderr)
Used by programs to signal error conditions
By default, stderr is sent to display
Must redirect explicitly even if stdout sent to file

fprintf (stderr, “getline: error on input\n”) ;
perror (“getline: error on input”);
Typically used in conjunction with errno return error code
errno = single global variable in all C programs
Integer that specifies the type of error

Each call has its own mappings of errno to cause
Used with perror to signal which error occurred

14



Example

#include <stdio.h>
#include <fcntl.h>
#define BUFSIZE 16

int main(int argc, char* argv[]) {
int £d,n;
char buf[BUFSIZE];

if ((fd = open(argv[l], O RDONLY)) == -1)
perror ("cp: can't open file");
do {
if ((n=read(fd, buf, BUFSIZE)) > 0)
if (write(l, buf, n) != n)

perror ("cp: write error to stdout");

} while (n==BUFSIZE) ;
return O;

[e]

s cat opentest.txt

This is a test of CS 201
and the open(), read(),
and write() calls.

% ./opentest opentest.txt
This i1s a test of CS 201

and the open (), read(),
and write () calls.

o

% ./opentest asdfasdf
cp: can't open file: No such file or directory

=

[¢]

15



/O Redirection in the Shell

File Redirection
1s —1 > outfile
Redirects output to “outfile”
./a.out < infile
Standard input taken from “infile”
1s —1 > outfile 2> errorfile

Sends standard error and standard out to separate files

Connecting programs to each other via pipes
ls —1 | egrep tar
Standard output of “1s” sent to standard input of “egrep”

16



1/0 via “File” Interface

Similar interface
fscanf, fread, fgets, fprintf, fwrite, fputs

Must supply FILE* argument for each call
Note: FILE* # file descriptor

FILE *fopen(char *name, char *mode) ;
Opens afile if we have access permission

Returns a “FILE pointer” which you use in fread, fwrite, ...

FILE *fp;
fP - fopen("/tmp/x", "rn)’.

Once the file is opened, we can read/write to it.

int fclose(fp) ;

Flush any pending output and clean up.

17



/0 via “File” Interface

#include <stdio.h>
#include <string.h>

main (int argc, char** argv) {
char *p = argv[l];
FILE *fp;

fp = fopen ("tmpfile.txt","w+")
fwrite (p, strlen(p), 1, fp);
fclose (fp);

return 0;

test file ops HELLO

$ cat tmpfile.txt

HELLO

18



Memory allocation and management

(void *) malloc (int numberOfBytes)
Dynamically allocates memory from the heap
Memory persists between function invocations (unlike local variables)

Returns a pointer to a block of at least numberOfBytes bytes
Not zero filled!

Allocate an integer
int* iptr = (int*) malloc(sizeof (int));
Allocate a structure

struct name* nameptr =
(struct name*) malloc(sizeof (struct name)) ;
Allocate an integer array with “n” elements

int *ptr = (int *) malloc(n * sizeof(int));
19



Memory allocation and management

(void *) malloc (int numberOfBytes)

Be careful to allocate enough memory!
Overrun on the space is undefined!!!

Common error:
char *cp = (char *) malloc(strlen (buf) *sizeof (char))
NOTE: strlen doesn’t account for the NULL terminator!
Fix:

char *cp = (char *) malloc((strlen(buf)+l) *sizeof (char))

20



Memory allocation and management

void free(void * p)

Deallocates memory in heap.
Pass in a pointer that was returned by malloc.

Example
int* iptr = (int*) malloc(sizeof (int)) ;

free (iptr) ;

Example
struct table* tp =
(struct table*) malloc(sizeof (struct table));

free (tp) ;

Freeing the same memory block twice corrupts memory
and leads to exploits!

21



Memory allocation and management

Sometimes, before you use memory returned by
malloc, you want to zero it

Or maybe set it to a specific value

memset () sets a chunk of memory to a specific value

void *memset (void *s, int ch, int n);

1
Set this memory to this value for this number of bytes

22



Memory allocation and management

How to move a block of bytes efficiently?

void *memmove (void *dest, wvoid *src, int n);

How to allocate zero-filled chunk of memory?

void *calloc(int numberThings, int sizeOfThings) ;

Note:
These slides use “int”
However, “size t” is better.
Makes code more portable.
“size t” -2 unsigned integer.

23



Strings

String functions are provided in the string library.

#include <string.h>

Includes functions such as:
Compute length of string
Copy strings
Concatenate strings

24



Strings
In C, a string is an array of characters terminated with

the “null” character (' \0' == 0).

Set p to the address of a character array

char *p = "This is a test";

Pl e—» T'h‘i‘s‘ 'i‘s‘ 'a' 't'e's‘t‘\o

NOTE: p can be reassigned to a different address

char name[4] = "Bob";

char title[10] = "Mr.";
namee—Pp 'B'l 'o'| 'b'| \O

title.—> "™M'| 'r'"| '."| \O X

25



Copying strings

Consider
char* p =“PPPPPPP”;
char* g =%“QQQ0Q0QQ0Q";
P = qg;

What does this do?

1. Copy QQQQQQ into 0x1007?
2. Set p to 0x200

PPPPPPP

. 0x100
‘QQQQQQQ

0x200

26



Copying strings

Consider
char* p =“PPPPPPP”;

char* g =%“QQQ0Q0QQ0Q";
P = 4q;
What does this do?
1. =Sopy-00aaaa-inte-85x+883—
2. Set p to 0x200

PPPPPPP

N
. \\\\iruoo
‘ QQQQQQQ

0x200

27



Copying strings

Consider
char* p =“PPPPPPP”;

char* g =%“QQQ0Q0QQ0Q";
P = 4q;
What does this do?
1. =Sopy-00aaaa-inte-85x+883—
2. Set p to 0x200

To copy the strings?
 Manually copy characters

pl2] = ql[2];
* Use strncpy to copy characters

PPPPPPP

0x100

QQQQQQQ

0x200

j/

;

PPPPPPP

0x100

;

QQQQQQQ

0x200

28



Copying strings

Consider
char* p =“PPPPPPP”;

char* g =%“QQQ0Q0QQ0Q";
P = 4q;
What does this do?
1. =Sopy-00aaaa-inte-85x+883—
2. Set p to 0x200

To copy the strings?
 Manually copy characters

pl2] = ql[2];
* Use strncpy to copy characters

PPPPPPP

0x100

QQQQQQQ

0x200

j/

;

PPOPPPP

0x100

;

QQQQQQQ

0x200

29



Strings

Assignment( =) and equality (==) operators
char *p;
char *q;
if (p == q) {
printf ("This is only true if p and g point

to the same address") ;

}
p = gq; /* The address contained in q is placed */
/* in p. Does not change the memory */

/* locations p previously pointed to.*/

30



C String Library

Some of C's string functions

strlen (char *sl)
Returns the number of characters in the string, not including the
“null” character
strncpy (char *sl, char *s2, int n)

Copies at most n characters of s2 on top of s1. The order of the
parameters mimics the assignment operator

strncmp (char *sl, char *s2, int n)
Compares up to n characters of s1 with s2 lexigraphically.
Returns <0,0,>0if s1 <s2,s1 ==s2ors1>s2

strncat (char *sl, char *s2, int n)
Appends at most n characters of s2 to s1

Insecure deprecated versions: strcpy, strcmp, strcat

31



String code example

#include <stdio.h>
#include <string.h>
int main() {

char first[10] = "Harry ";
char last[1l5] = "Porter";
char name[30];

char you[] = "Harold";

strncpy (name, first, strlen(first)+1);
strncat (name, last, strlen(last)+1l);

printf ("%d, \"%$s\"\n", strlen(name), name) ;
printf ("%d \n", strncmp(you, first, 3));

12, "Harry Porter”
0

32



strncpy and null termination

strncpy does not guarantee null termination

= Intended to allow copying of characters into the middle of
other strings

m Use snprintf to guarantee null termination

Example

#include <string.h>
main() {
char a[20]="The quick brown fox";
char b[9]="01234567";
strncpy (a, b, 8);
printf ("%$s\n", a);

./a.out

01234567k brown fox




Other string functions

Converting strings to numbers

#include <stdlib.h>
long strtol (char *ptr, char **endptr, int base);
long long strtoll (char *ptr, char **endptr, int base);

Takes a character string and converts it to a long (long) integer.

White space and + or - are OK.
Starts at beginning of ptr and continues until something non-

convertible is encountered.

Examples:
] ] String Value returned
endptr (if not null, gives "q57" 157
location of where "_1.6" 1
parsing stopped "+50x" 50
due to error) "twelve" 0
"x506" 0

34



Other string functions

double strtod (char * str, char **endptr);

String to floating point

Handles digits 0-9.

A decimal point.

An exponent indicator (e or E).

If no characters are convertible a 0 is returned.

Examples:
String Value returned
"12" 12.000000
"-0.123" -0.123000
"123E+3" 123000.000000
"123.1e-5" 0.001231




Examples

/* strtol Converts an ASCII string to its integer
equivalent; for example, converts "-23.5" to -23. */

int my value;
char my string[] = "-23.5";
my value = strtol(my string, NULL, 10);

printf ("$d\n", my value) ;

/* strtod Converts an ASCII string to its floating-point
equivalent; for example, converts "+1776.23" to the value

1776.23. */
double my value;
char my string[] = "+1776.23";
my value = strtod(my string, NULL);

printf ("$£\n", my value) ;

36



Random number generation

Generate pseudo-random numbers

int rand(void) ;
Gets next random number

void srand(unsigned int seed);
Sets the seed for Pseudo-Random Number Generator

For Unix/Linux documentation:
S man 3 rand
On Internet:

www.man7.org

37



Random number generation

#include <stdio.h>

int main(int argc, char** argv) {
int i, seed;

seed = atoi(argv[1l]);
srand (seed) ;
for (i=0; i < 10; i++)
printf("%d : %d\n", i , rand());

/myrand 30
493850533
1867792571
1191308030
1240413721
2134708252
1278462954
1717909034
1758326472
1352639282
1081373099

0
1
2
3
/.
5
6
7
8
9




Makefiles

The make utility: Compile things as necessary:
make

The makefile: Recipe for compiling your code.

Call it makefile or Makefile (big or little M)

The “make” utility will use that by default
You only have to specify the name if it’s called something else

The first rule in the makefile is used by default if you
just say “make” with no arguments

The second line of each rule (the command) must start
with a tab, not spaces!

39



A simple Makefile

sd:

sd.c
gce -Wall -g sd.c -o sd

40



A little more complex

all: sd testl tlcheck test2

sd: sd.c
gcc -Wall -g sd.c -o sd

testl: testl.c
gcc -Wall -g testl.c -o testl

test2: test2.c
gcec -Wall -g test2.c -o test2

tlcheck: tlcheck.c
gcc -Wall -g tlcheck.c -o tlcheck

clean:
rm sd testl tlcheck test2

41



A more complex makefile

CC = gcc

CFLAGS = -Wall -02

LIBS = -1m

OBJS = driver.o kernels.o fcyc.o clock.o

all: driver

driver: $(OBJS) config.h defs.h fcyc.h
$(CC) $(CFLAGS) $(OBJS) $(LIBS) -o driver

driver.o: driver.c defs.h
kernels.o: kernels.c defs.h
fcyc.o: fcyc.c fcyc.h

clock.o: clock.c

42



How to make a tar file:

mkdir john
cp *.c *.h Makefile john

tar cvf john.tar john

How to extract the tar file:

tar xvf john.tar

43



GDB debugger



The Unix/Linux Debugger: gdb

When all else fails...
e Stop the program
¢ Look at (or modify) registers
¢ Look at (or modify) memory
¢ Single-step the program
¢ Set a “breakpoint”
To compile a program for use with gdb

... use the ‘-g’ compiler switch

45



Controlling program execution

run
Start the program.

step
Step program until it reaches a different source line.

next
Step program, proceeding through subroutine calls.
Single step to the next source line, not into the call.

Execute the whole routine at once; stop upon RETURN.

continue

Continue program execution after signal or breakpoint.

46



Controlling program execution

break, del

Set and delete breakpoints at particular lines of code

watch, rwatch, awatch
Data breakpoints

Stop when the value of an expression changes (watch), when
expression is read (rwatch), or either (awatch)

47



Printing out code and data

print
print expr
(gdb) print x
(gdb) print argv|[O0]
print {type} addr
(gdb) p {char *} Oxbfffdce4

(gdb) print/x addr
‘Ix’ says to print in hex. See “help x” for more formats
Same as examine memory address command (x)

printf “format string” arg-list
(gdb) printf "%$s\n", argv[O0]

list

Display source code

48



Other Useful Commands

where, backtrace

Produces a backtrace (the chain of function calls that brought
the program to its current place).

up, down
Change scope in stack

info
(gdb) info prints a list of info commands
(gdb) info br Print a table of all breakpoints
and watchpoints
(gdb) info r The machine registers
quit
Exit gdb

49



O 0 NN & U1 b WIN =

NN NDNRERBRBRRRRFH B B @B
WINKFHO WVWOOWNOGOUB WNERO

void sub(int i) {

Example Program

#include <stdio.h>

char here [900];

sprintf ((char *) here, "Function %s in %s", _ FUNCTION__ , _ FILE_ )

printf ("%s @ line %d\n", here, _ LINE_ );

void sub2(int j) {
printf ("%d\n”, j);

int main(int argc, char** argv)

{

int x;
x = 30;
sub2 (x);
x = 90;
sub2 (x);
sub (3);

printf ("%s %d\n", argv[0], argc);

return (0);

http://cs.pdx.edu/~harry/cs201/gdb_example.c

14

50



Walkthrough example

gcc
gdb
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

o\° o\©

-g gdb_example.c -o b_example

gdb_example

set args a b c d
list 1,99

break main

break sub

break 6

run

disass main

info r

argv

argv[0]
argv[l1]
strlen(argv[1l])
argc

/x argc

X

=R B e T o B B o L o B o

e llie]
~N
E
og)
]

x/w &x

set program arguments

list source file through line 99

set breakpoint at beginning of “main” function
set another breakpoint

set break at source line

start program (breaks at line 16)

show assembly code for “main” function
display register contents

hex address of argv (char*)

prints “gdb_example”

prints “a”

prints 1

prints 5

prints 0x5

uninitialized variable, prints some #
execute to the next line

x is now 30

print address of x

print contents at address of x

51



Walkthrough example

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

n
S

s
continue
where

p X

up

p X

del 3
continue

info br
del 1
break main
run

watch x

c

quit

go to next line (execute entire call)

go to next source instr

go to next source instr (follow call)

go until next breakpoint (breaks at line 6 in sub)
list stack trace

X no longer scoped

change scope

X in scope, prints 90

delete breakpoint

finish

get breakpoints

delete breakpoint
breakpoint main

start program

set a data write watchpoint
watchpoint triggered

quit

52



Different gdb interfaces

Better graphical interfaces

Most debuggers provide the same functionality

m gdb —tui

Sort of graphical (like “vi”
m Insight: http://sourceware.org/insight
m DDD: http://www.gnu.org/software/ddd
m TDB: http://pdqgi.com/browsex/TDB.html
m KDbg: http://www.kdbg.org

53



N 100: /u/wuchang/p0.c
File Edit View Program Commands Status Source Data Help

0] $eax T M R A TR N - -

Lookup Find» Break Watch Print Dispk  Fiot  Hide Foiste  Set  Undisp

#include <stdio.h>
#include <string.h>

char¥ a[] = {"w31cOm32", "wh34t&ch", "4ffc4nc0", "m4lwdr3!", "hOp3u3nj", "Oyth3cl4", "55.thl51", "Shwk#1!!"};

int main(int argc, char* argv([])

(gdb)

_\ Execution window has been closed...done.

"~ char buff[100];
) , Registers
printf("What is the password? "); A
scanf("%99s",buff); eax gx;;;;gagj
ecx X a
if (strncmp(buff,al0],strlen(al0]))) { edx Oxffffda24
) ]pr1?tf ("Sorry, wrong password.\n"); ebx 0xf7fadff4
else es Oxffffdoso
printf ("Submit this string as your homework solution: %s\n", a[3]); ebg OxFFFfdofs
return O; =51 0x0
1 edi 0x0
eip 0x80484f8
eflags 0x286
cs 0x23
S5 Ox2b
= P
> Integer registers - All registers Y
Breakpoint 1 at Ox80484f8: file p0.c, line 7.
(gdb) run o Hol
ose | elp |
Breakpoint 1, main (argc=1l, argv=0xffffda%94) at p0.c:7



