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Normally the CPU executes one instruction after the other. This is called sequential execution.
This sequence constitutes the CPU’s flow of control.

We can describe the sequential execution of a CPU with the following pseudo-code:

LOOP FOREVER
FETCH NEXT INSTRUCTION
INCREMENT PC
DECODE INSTRUCTION
EXECUTE INSTRUCTION
ENDLOOP

This simplistic view assumes there is only one CPU (not multiple cores) and it assumes that there
is no pipelined execution. Nevertheless, it describes the operation of many practical computers.
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Normally, after the execution of one instruction, the CPU will execute the instruction that
immediately follows it in memory.

Notice that the “execute” step may involve updating the Program Counter (PC), thus causing a
jump, call, or return (i.e., a transfer of control) on the next cycle. So exceptions to the sequential
execution of instructions can occur whenever the following instructions are executed, but these
are effectively under program control. They occur only when execution reaches one of these
instructions.

CALL
RETURN

JUMP

CONDITIONAL BRANCHES

Other than that, there seems to be no way to avoid sequential instruction execution. This means
that the computer is only capable of reacting to events when the code explicitly checks for these
events.

Asynchronous events are events that can come at any time. Here are examples:

The disk completes a read or write operation

A packet arrives on a network connection

An alarm clock or timer goes off

A program tries to do something invalid and cannot continue execution
The user types a keyboard key or presses a mouse button

For asynchronous events like these, there is a mechanism that breaks the sequential execution of
instructions. This allows the computer to immediately respond to the event, regardless of what it
was busy doing when the event occurred.

We call changes to the normal sequential flow of control “exceptions”. The CPU is equipped with
hardware that facilitates exception processing. In addition, there are higher-level mechanisms in
software that also perform something similar to the hardware exception processing.

At the software level, there are a number of different techniques and mechanisms that break the
traditional model of sequential execution in the FETCH-INCREMENT-DECODE-EXECUTE cycle. The
main techniques in Unix/Linux are:

e TIME SLICING / PROCESS SWITCHING / MULTITASKING
e SIGNALS
e LONG JUMPS
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At the lowest level, exception handling is done in the hardware. Hardware exceptions handled by
the CPU are typically very fast, with little overhead. At the higher-level, when the sequential flow
of execution is altered via the software techniques listed above, there is more overhead.

We use the term exceptions to refer to the exceptional control flow that happens at the low,
hardware level. Here is a rough classification of the different kinds of exceptions that can occur:

Hardware Exceptions
Asynchronous Exceptions (Interrupts)
Examples:
Timer/Clock interrupts
Disk I/0 completion
Interrupts from other [/0 devices
Synchronous Exceptions
Traps
Examples:
System Calls
Other traps
Aborts
Examples:
Machine check
Faults
Examples:
Arithmetic problems (like zero-divide)
Unimplemented instruction
Page Faults
Protection errors

Asynchronous exceptions are also called asynchronous interrupts or simply interrupts. Such
an event can occur at any moment and the occurrence of the event is unrelated to which
instructions are being executed. Asynchronous interrupts come from outside the CPU’s FETCH-
INCREMENT-DECODE-EXECUTE cycle. Various 1/0 devices will cause asynchronous interrupts to
indicate they have completed performing the 1/0 operation.

The timer can be thought of as an I/0 device although it is located inside of the CPU and isn’t
involved in transferring data from the computer to any other device. Instead, the timer causes
periodic interrupts.

A timer interrupt is something that occurs on a regular basis and is used for time-slicing. For
example, a timer interrupt might occur every millisecond. The timer interrupt occurs when a user-
level application process is running. The sequential execution of the process is interrupted and
control is transferred back into the kernel. These timer interrupts allow the kernel to regain
control of the CPU. The kernel uses timer interrupts to switch from one process to the next. In this
way, all processes can make forward progress, even though there is only one CPU. This is the
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essence of multitasking. Hardware support for timer interrupts is required in order to allow the
OS to implement multitasking.

A synchronous exception occurs as the result of executing some particular instruction. An
exception that is caused intentionally is called a trap. The programmer has included an instruction
in the program that, when executed, will cause a trap. The most common example is the system
call (i.e., syscall) instruction. The programmer will include a syscall instruction whenever it is
necessary to request a service from the kernel.

The syscall instruction is used to invoke a kernel function. Here are some functions that will
execute a syscall instruction whenever they are invoked.

open(), close(), read(), write(), fork(), wait(), exit(), execve(), ...

What they have in common is that they all request a service that must be performed by the kernel.
These operations cannot be done within user-level code. There is only one syscall instruction, but
it can be used to invoke any of the kernel functions.

These functions are called wrapper functions. The wrapper functions execute in user address
space as user-level code running in user mode. The wrapper function doesn’t do the actual
work; instead it makes a system call into the kernel. For each wrapper function there is a
corresponding syscall trap handler function in the kernel. The handler function is invoked as
part of the exception processing. Later, the handler will makes a return to the wrapper function
(which is user-level code) using the RETI (Return From Interrupt) instruction..

There are hundreds of these system calls in Unix/Linux and there is pretty good standardization
across difference versions of Unix/Linux. Most system calls respect the specifications documented
in the POSIX standard. POSIX is an agreed-upon standard specification that covers all Unix/Linux
software. Almost all system calls on your Unix/Linux computer are POSIX compliant, but a few
are OS-specific. (You should avoid anything that is not POSIX compliant.)

There may be other traps. For example, many CPUs have a breakpoint instruction to help
debuggers like gdb do their work.

Many CPUs include circuitry that is always checking quietly to verify that the CPU is operating
properly. This circuitry can be ignored by the programmer and the programmer does not need to
understand anything at all about it. The circuits are active at all times, constantly watching for
anything that goes wrong. As long as the CPU is working properly, nothing happens, but when this
fault detection circuitry detects a hardware failure, a machine check exception occurs.

Some computers may have minimal or no fault detection circuitry, while others will have
extensive circuitry. Software that is mission-critical must be robust. When a machine check is
detected, the overall system must continue to function or at least do its best and fail as gracefully
as possible. A machine check exception might be used to implement graceful failure, whereby a
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failing machine goes down in a planned sequence designed to be safe and achieve the best (or
“least-bad”) outcome.

In many OSes, the kernel will respond to a machine check exception by (1) terminating the
process that was running at the time of the failure, and (2) logging the failure so that a string of
frequent failures can be detected. If the machine check occurs while the kernel is executing, the
kernel may abandon every running process and simply reboot itself.

The remaining types of exceptions are loosely called faults.

Certain conditions can arise during some instructions that make completion of the instruction
impossible. These include faults such as Floating Point Exception (FPE) or Arithmetic
Exception. For example, dividing by zero typically causes an exception. Likewise, the floating
point standard specifies which operations may raise an exception. For example, subtracting
infinity from infinity is an error. In such cases, the instruction stream is interrupted and the
process cannot continue. The process will be aborted. (Actually, the kernel will send a signal to the
process; signals are discussed later in this document.)

If the CPU fetches an instruction and, when decoding the instruction, determines that it is not a
valid, defined instruction that is implemented, then a fault occurs. For some “instructions” (i.e., for
some invalid bit sequences that have been fetched), there is no such instruction and the process
cannot continue. A invalid instruction fault occurs and the process is aborted.

In other cases, the bit pattern may represent a known instruction that implemented on some
models of the processor but not other models. If the instruction is not implemented by the version
of the CPU in question, the CPU cannot execute it. Instead, the instruction must be emulated (i.e.,
performed by software). In this case of an emulated instruction, the kernel exception handler will
perform the instruction’s execution using a software algorithm. Then the kernel will return to the
process and normal instruction execution will resume with the following instruction.

Simple CPUs sometimes implement their floating point instructions with emulation. The floating
point operations are quite complicated and some CPUs are unable to execute these instructions in
hardware. So they emulate the floating point instructions using exception fault processing.

Another kind of fault is the page fault. Page faults are used in conjunction with virtual memory.
The idea is that a user-level process is executing instructions. Normally those instructions (and
their data) are located in physical main memory and so everything works. But sometimes, the
instructions or data are not present in main memory, in which case a page fault occurs.

When the kernel handles a page fault, it first determines what happened. There are several
possibilities:

(1) The required bytes are currently not in main memory but have been swapped out to disk.
(2) The process is trying to write to bytes that are marked “read-only”.
(3) The process is trying to access bytes that are completely out of range and invalid.
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In case (1), the process has done nothing wrong. At any one time, some of the pages of the logical
(i.e., virtual) address space will be kept in main memory while other less-used pages of the
address space are kept out on disk. When the page of memory that is needed is not one of the
pages currently in main memory, a page fault is triggered. To deal with this page fault, the kernel
will go out to disk, get the required page and move it into main memory, and then restart the
process. The process will be restarted on the same instruction that caused the fault, and this
instruction will be re-tried. Now, since the bytes are in main memory, the faulting instruction will
work okay and there will be no page fault. This happens all the time (although we design the OS so
that it doesn’t happen too much, or the process would spend all its time waiting on the disk!)

In case (2), the process is trying to update a page in its virtual address space that was marked
read-only. This is a problem. To guard against viruses and malware, the pages containing code are
generally marked read-only. Any program that violates this is either buggy or up to no good. The
kernel will terminate the process with a segmentation fault (i.e., a seg-fault or SIGSEGV signal).

In case (3), the process is trying to access a byte within its virtual address space that has not been
allocated. The virtual address space is divided into a series of contiguous pages. Each page is 4
Kbytes. With a 4 Gbyte virtual address space, there will be 1,048,576 pages, so we can number the
pages 0,1, 2,3, ...1,048,575. The code (the .text segment) goes into some pages. The .data
segment goes into other pages. The stack and heap are in other pages. But most of the pages are
simply unused and these pages are said to be unallocated. If the process tries to access a byte in
an unallocated page, it indicates the program is buggy. Just as in the previous case, the kernel will
terminate the process with a segmentation fault (i.e., a seg-fault or SIGSEGV signal).

The final kind of exception we want to mention is a protection fault (also called protection
violation or privileged instruction violation).

At any moment, the CPU is either in kernel-mode or is in user-mode. Kernel code is always
executed in kernel-mode. User-level code is always executed in user-mode, and this is really the
definition of exactly what is “kernel code” and what is “user-level code”.

In kernel-mode, all instructions may be executed and all security checking is turned off. In user-
mode, some instructions are not allowed. Such instructions are said to be privileged instructions.
A privileged instruction may only be executed in system-mode. If an attempt is made to execute
a privileged instruction when the CPU is in user-mode, the CPU will detect this security breach and
a protection fault will occur. The kernel will then get control and the offending user-level process
will be terminated. This is how the kernel protects itself from mean-spirited user code and
enforces a security barrier between itself and user code.

Kernel-mode is sometimes called “supervisor mode”, which dates back to the days when early
OSes were called “supervisor programs”.

How are exceptions processed by the CPU?
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The set of hardware exceptions is determined by the designers of the CPU. At the time the CPU is
designed, they determine: (1) Which exceptions exist, (2) what exactly causes the exception, and
(3) what the CPU does when an exception occurs. Each type of exception is given a number.

Some x86-64 exceptions:

0 divide by zero

6 invalid instruction

13 protection fault

14 page fault

15 floating point exception
18 machine check

32-255  syscall trap and other OS-defined exceptions.

An exception table (sometimes called the interrupt vector) is an array of pointers. This array
has a fixed, predetermined layout and is kept in a specific location in physical main memory. The
details of the table format and exactly where in memory it is located are determined by the CPU
designers. The authors of the kernel code work with the details they are given. Often the exception
table is located at the bottom of memory, i.e., at address zero.

The exception table contains one entry for each exception type. Each entry is the address of a
kernel function (or at least should be, if the kernel is to work correctly). This is the address of an
exception handler function. An exception handler function is part of the kernel. A handler will be
invoked and executed whenever an exception occurs. There is one exception handler function for
each type of exception.

An interesting fact is that once the kernel has finished booting and is up and running user-level
processes, the only way the kernel can be entered or get control is by executing a handler as a
result of a hardware exception.

When an exception occurs, the CPU will finish up the execution of the current instruction (or
instructions, in the case of pipelined execution) that was being executed. Then the CPU will
effectively insert a “call” to the exception handler function. The CPU hardware consults the
exception table to find the address of the right handler function to invoke. Each exception has a
different number (see the list above) and that number will determine which entry in the array of
addresses is used. The CPU will also switch into system-mode.

The kernel handler function will then run and will take the appropriate action. When it completes,
the normal thing is to return to the interrupted instruction sequence. There is a special instruction
called RETURN-FROM-INTERRUPT (RETI) that is the last thing the kernel exception handler
function does. The details are complex, but this is the general idea of what happens when an
exception occurs.
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Let’s see what happens when some user code invokes a Unix/Linux system function such as:
open (filename, options)

This function does a little work, but then calls a wrapper function named _open() to make the
system call. Here is the relevant part of __open():

00000000000e5d70 <__ open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

The code moves the number 2 into register %eax and then executes the syscall instruction. At that
point, the kernel gets control. The CPU will switch to kernel-mode and the syscall exception
handler function will be invoked. This function will look at %eax to determine which system call is
desired. The handler will then do the work of preparing the file for I/O and return a result value in
%rax.

Note that the term system call can mean a Unix/Linux system function such as open(), write(),
fork(), etc. Also system call is the name of an instruction. There is only one instruction and its
opcode name is SYSCALL.

In Unix/Linux, each system call has a number. Here are some of the code numbers used in one
particular version of Linux. (These numbers are not dictated by POSIX; different versions of
Unix/Linux may use different numbers.)

0 read

1 write
2 open

3 close
4 stat

57 fork
59 execve
60 _exit
62 Kkill

Upon completion of the syscall handler in the kernel, return will be made to the user-level code
(using the RETI instruction) and the instruction following the SYSCALL instruction will be
executed. This is a compare (CMP) instruction which will test the returned value.

1 Some examples in this document come from the Bryant and O’Hallaron textbook.
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After a page fault occurs and is handled, the return will be to the instruction that caused the
exception. Note the difference: After a syscall trap, the return will be to the following instruction,
but after the page fault, the return will be to the same instruction. In the case of a page fault, the
instruction will be re-tried a second time.

This makes sense. The page fault may have occurred because the page of memory that was needed
was not resident in physical memory. The kernel will not return from the handler until after the
page has been read in from disk to memory. So the instruction should be re-tried and will now be
able to execute without causing an exception.

It is possible that the page fault occurred because the program trying to do something it should
not do. Perhaps the program was trying to access a byte in an unallocated page or perhaps the
program was trying to modify a byte in a page that is marked read-only. In such cases, the
exception fault handler will not return to the interrupted code. Instead, the kernel will terminate
the process altogether. (In some cases, the kernel will send a signal to the process instead of
terminating it, but either way, there is never a return to the instruction that caused the exception.)

A process is an instance of a program that is running. A program is a static thing. A program may
be sitting quietly on disk. The program might not even be on any computer; perhaps the program
is written on a napkin, but it is still a program.

Once the program is loaded into main memory and the CPU begins executing the instructions, you
have a process. A process requires two things:

e An address space (i.e., memory)
¢ A CPU to execute instructions

In Unix/Linux the program is loaded into a virtual address space (sometimes called a logical
address space). A virtual address space is similar to the physical main memory of a computer. It
is a sequence of bytes, and each byte has an address. A virtual address space is different from
physical memory in the following ways:

The virtual address space is divided up into pages of size 4Kbytes

Some pages may be marked read-only

Some pages in the address space may be unallocated

The pages of the address space may be stored in physical memory (RAM) or on disk

A process also needs a thread of control. This is provided by a CPU which is executing
instructions. Since the computer may have only one CPU, the kernel is responsible for sharing that
CPU between several processes. (If there are multiple cores, the kernel tries to share them all
between the processes, which is a little trickier, but basically the same idea.)
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A single program can be running simultaneously within several different processes. For example,
in a multi-user system, two individual users might be executing the same program. (Perhaps they
are both using the “vi” text editor at the same time.) There is only one “vi” program, but this
program is running in two processes concurrently. Normally, these processes would be
completely independent and neither would even know about the other.

When the kernel switches the CPU from executing one process to executing another process, it
must save the entire state of the first process before the switch.

Switching from one process to the next is called a context switch. The kernel performs context
switches very often. For example, there may be a context switch every millisecond. This implies
that each process gets 1/1000 of a second of CPU execution time before the CPU is switched to
another process. It also implies there are 1000 context switches per second.

When a context switch occurs, we can talk about the “previous process” and the “next process”.
The kernel must save the state of the previous process. The state of a process is all the
information that is necessary to restart that process at some later time. Mostly, the state consists
of the registers, so the kernel must save the values of the registers when the previous process is
stopped.

Next, the kernel will load the state of the next process into the registers. Once this happens, the
next process can run.

In addition to registers, the state of a process also includes information about the virtual address
space. The kernel maintains information about where the pages of the virtual address space are
actually stored. A page of virtual memory may be loaded into physical memory or it may be out on
disk. The kernel keeps track of a bunch of virtual address spaces and, for each address space, it
keeps track of where the pages are, which pages are allocated, which pages are read-only, and so
on.

When a context switch occurs, this aspect of the state must also be changed. The information
about the previous process’s virtual address space must be stored and the information about the
next process’s virtual address space must be loaded. Then, when the next process runs, all
instructions will be executed inside the correct virtual address space.

The kernel is running many processes at any one time. A typical Unix/Linux computer may have
over 100 processes that are currently running. Of course only one process is actually executing
instructions on the CPU (assuming a single-core processor). The other processes are waiting for
their turns. (In the case of a processor with 4 cores, 4 processes would be running concurrently.)

At each context switch, the kernel must choose which process to run next. This part of the kernel is
called the scheduler and there are a number of different scheduling algorithms. The simplest
scheduling algorithm is called round-robin. With round-robin scheduling, the processes are
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executed in order, one-after-the-other. There is really no scheduling decision at all; the kernel just
maintains a queue. At a context switch, the previous process is placed at the tail of the queue and
the process at the head of the queue is removed and scheduled next.

These fascinating topics are covered more fully in the Operating Systems class.

In a typical system, there are many processes running at any one time. One process is probably
your shell process. If you are running a command (such as the “vi” editor or the “gcc” compiler or
some other command), then there will be a process created just for that command. In addition,
you’ll see the original process, which is called init. This is a sort of “master process” which is
created at boot time. (It’s call launchd in the Mac OS). In addition, there will be a number of
processes concerned with the window interface, the network interface, and the kernel itself. If you
have other windows open (such as a web browser) there will be processes for that. The email
system involves several processes. And so on!

When several processes are running, we say they are concurrent. Only one can be executing
instructions at a time (at least on a single core computer), and the others are sitting in the
scheduling queue waiting for their turns. The context switches occur very frequently (e.g., every
millisecond), so to us humans, it seems as if they are all running at the same time, and all making
continuous progress.

Here is a picture showing 3 processes. Each horizontal dashed line indicates a context switch.

Process A Process B Process C

Looking more closely at the context switches in the next picture, we can see that the kernel gets
involved each time.

Here’s what happens: Process A is executing. Then a timer interrupt occurs. (For example, such an
interrupt will occur every millisecond.) Then the kernel exception handler gets control. The kernel
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saves the state of process A (the “previous” process) and loads the state of process B (the “next”
process). Then process B executes for a millisecond, until the next timer interrupt causes another
context switch. Then the kernel gets involved again, and so on, a thousand times per second.

Process B

Process A

user code

'._____—___

1

I
v

1
I
I

kernel code } context switch

Time user code

e
\
\

\
1

kernel code } context switch

\

user code

ld—
In the next picture we move out a little and see round-robin scheduling between 3 processes.

(There would actually be many more processes in a typical system, but this shows the idea of
round-robin scheduling.)

Process A Process B Process C
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In the next picture, we move further out and look at an even bigger picture. Now we are unable to
see the individual context switches, but we still have the idea that each process is a collection of
time-slices. (Each segment of the dashed line represent one time slice.)

Process A Process B Process C

Time

G-————mmmnncc e ——-
G- ————

G- e ————

Finally, we move out even further. At this point, the time-slices are no longer visible and we can
see the entire process execution, from process creation to process termination. In this view, it
appears that all processes are executing with true concurrency, although you now know this is an
illusion.

Process A Process B Process C

Time |

In this example we say that processes B and C are sequential since one of them (B) terminates
before the other process (C) begins. We say that A and B are concurrent since their overall
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execution overlaps (although we know that on a single core computer, they are time-sliced and
never truly execute instructions at the exact same time).

A and B - concurrent execution
A and C - concurrent execution
B and C - sequential execution

If concurrent processes interact in any way, the programmer must be very careful to control their
interaction. This is called concurrency control. The kernel’s scheduler makes no guarantees
about the relative speeds of execution or when exactly the context switches occur. If the two
processes share data, then they must be careful about the order of reads and writes.

Consider what would happen if process A reads some data, computes a new modified value, and
then writes the data back out. Now imagine that process B also does the same sequence: read-
compute-write back. Imagine that they both read the same data value at more-or-less the same
time. Then they both compute at more-or-less the same time. Assume that process A writes the
data back out first, and then process B writes the data back out. Notice that the value that A wrote
back out is subsequently overwritten by process B! So the results of process A’s computation are
lost! Not good!

Notice that this program may work correctly some times and incorrectly other times. This
program has a race condition (sometimes called a race bug). The behavior of the program
depends on the actual timing of the processes. This is unpredictable and can vary from run to run.
Race bugs may be intermittent and not reliably reproducible. This makes them very, very
difficult to find and correct! Normal debugging procedures (whereby we run the program to see if
it works properly) are not adequate for concurrent programs that interact.

Unfortunately, we cannot go into the solutions to concurrency control problems here, but there
are many interesting techniques.

Instead, we turn to the question of how processes are created and how programs can be loaded
into virtual address spaces and run.

Whenever you invoke a system function (such as open(), read(), write(), fork(), etc.) you should
always check the return value to see if an error has occurred. Some functions return “void”—
which means nothing is returned—and you don’t need to check these of course, but for others,
never ignore error checking.

For example, the fork() system call should return a non-negative value. (We'll discuss this function
a bit later.) If there is a problem, the function will return a negative number. Many system
functions also set a global variable called errno. They will store into errno an integer value that
indicates the specific error.
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There are some functions such as strerror() and perror() that can be used to translate the
integer code number in errno into a meaningful string. Here is some typical code which calls
fork(). If there is an error, it prints the error message and terminates the process.

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

Here is similar code that does the same thing. This way of doing it is very common.

if ((pid = fork()) < 0) {
perror ("fork error");
exit(0);

}

If we call a function from many places, it may be burdensome to always check for errors. So we can
create a wrapper function to make our life easier, as shown next. Notice that we have given the
wrapper function a name beginning with an uppercase “F”, in contrast to the system call which
begins with a lowercase “f”.

pid t Fork(void) {
pid t pid;
if ((pid = fork()) < 0) {
perror ("fork error");
exit(0);
}
return pid;

}

Now we have a way to safely call fork() without cluttering up our code with a bunch of error
checking code. We can just write this:

pid = Fork();

Each process has an id, called the process ID (PID). This is a small number assigned by the kernel
when the process is created.

Processes are related in a parent-child relationship. Whenever a process is created, it becomes a
child of the process that created it. Likewise, the creator is the parent of the new process.

Here are a couple of functions to retrieve the ID number of the current process and the ID of the
process’s parent. By current process, we simply mean the process that is calling the function, i.e.,
the currently executing process. So with getpid(), a process can learn its own PID.
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pid t getpid(void)
pid _t getppid(void)

These functions have no error conditions.

Every process is in one of the following states:

Running
Stopped
Terminated

A running process is either having instructions actively executed by the CPU or is waiting its turn.
If a running process is not currently executing instructions, then it is waiting to be scheduled.
There is nothing preventing the process from making progress except that the CPU is a limited
resource that can only execute one process at a time and the CPU is busy executing another
process at the moment.

A stopped process is said to be blocked. It cannot be executed for some reason, but it will go back
to running later. A stopped process is waiting for some event. When the event occurs, the process
will once again be running. For example, a process could be stopped and waiting on the
completion of an I/0 operation such as a file I/O. When a page fault occurs, the process must be
stopped until the required page can be read in from the disk.

A terminated process has completed its execution. It will never run again. There are several ways
to terminate a process. If a process invokes the exit() system call, it will be terminated. If a
process returns from main() it will be terminated. Certain kinds of exceptions (like segmentation
fault or protection violation) will terminate a process. A process can also be terminated by
another process. If a process is ever sent the SIGKILL signal (which would be sent by another
process), it will be terminated.

The exit() function can be called to terminate a process.
void exit(int status)

There is never a return from this function, and there are no error conditions associated with the
function itself. The argument is a number and this will become the exit status of the process.
Other processes may check a process’s exit status to see whether the program “worked” or not.

Typically a program that encounters some error condition will terminate with a non-zero exit
status. By convention, an exit status of zero means “no problems, all okay”, while a non-zero exit
status indicates that something went wrong in the program. The exit status should be in the range
0-255. Note that the exit status is non-negative and limited to an 8-bit number.
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Often, a value of 1 is used to indicate that an error occurred and all further information about the
error is printed to the stderr output.

When a program’s main() function returns, it returns a value. The main() function is actually
invoked from a special function that is used to get the process going in the first place. After main()
returns, that function will call exit() using the value returned by main(). It doesn’t matter how you
terminate the process—either returning from main() or directly invoking exit()—they do the
same thing.

Notice that exit() is somewhat unusual. You can call it, but it never returns!

The fork() system call is used to create a new process.
pid t fork (void)

The symbol pid_t is a typedef. You can often spot typedefs because many end with “_t”. The type
pid_t is the type of process IDs. Since process IDs are just small integers, I feel the following
prototype for fork() is clearer and easier to understand, even though there might be some minor
differences between the two for some platforms or implementations of Unix/Linux.

int fork (void)

The fork() function is invoked by a process (the “parent”) and it will create a new process (the
“child”).

The child will be a clone of the parent, in the sense that they are almost exactly identical. The child
will have a newly created virtual address space, which will contain exactly the same bytes as the
parent’s address space. This new address space is a copy, so when either parent or child modifies
its address space, the change only affects that address space. The other process will not “see” the
change.

Files that are open in the parent will also be open in the child. Typically, stdout is attached to the
terminal display. The child will inherit stdout, as well as stdin and stderr, from the parent. After
the fork, if either process writes to stdout, the output will appear on the terminal display. If the
parent had stdin open before the fork, it will also be open in the child after the fork. If the user
types a key, then that character can go to either process; it just depends on which process executes
aread() first.

One difference is that the child will be assigned a process ID that is different from the parent’s PID.
During the invocation of the fork() system call, the child is created. From that instant onward, they

behave the same way. In particular, both processes are executing the same instructions in
identical address spaces. The parent (which called fork()) will return from the system call.
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Likewise, the child will also return from the call to fork(). After all, they are clones so they behave
the same way and therefore do the same thing.

Thus, for fork(), there is one call and two returns!

(For every process, there is a fork() when the process is created and an exit() when the process
terminates, so in some sense, the “calls” and the “returns” do end up balancing and being equal in
number.)

Another difference between parent and child concerns the value returned from the fork() system
call. In the parent, the return value will be the process ID (PID) of the newly created child. In the
child, the return value will be zero. Normally, the code immediately following the call to fork() will
check the return value.

If the value is zero, then the process is the child process. To put it another way, if a process checks
the return value from a call to fork() and finds that it is zero, it will know that it is the child
process.

On the other hand, if the value is non-zero, the process must be the parent. So within the parent
process, the fork() system call returns the process ID of the child that was just created.

Normally, programs check the return value from fork() and do something different, depending on
the PID returned from fork(). In other words, the parent and the child processes can behave
differently after the fork(). Once a process checks the return value from fork(), it knows whether it
is the parent or the child. At that point their behaviors usually diverge wildly, with the parent and
child doing very different things.

Here is an example using fork(). Note that we call our wrapper function Fork() to handle any
errors that may arise.

pid _t pid = Fork();
if (pid == 0) {

printf("Hello from child\n");
} else {

printf("Hello from parent\n");

}
This program begins by calling fork(). Then the process (perhaps we should say “both processes”)
checks the return value to see whether it is the parent or the child. The parent prints one message

and the child prints a different message.

What is the output produced by this program? It could be either this:

Filename: Exception-Handling.docx Page 18 of 59
Created: December 1, 2015
Last updated: December 9, 2015 12:13 PM



Hello from child
Hello from parent

or this:

Hello from parent
Hello from child

It only depends on which process happens to be scheduled first.

Here is another example. In this example, we see a variable “x”. In the child, the variable is
incremented before being printed. In the parent, the variable is decremented before it is printed.

Notice that before the call to fork(), there is only one copy of the address space. The variable “x”
has only one value, namely 1. After the call, there are two processes with identical address spaces.
So each process has its own private copy of variable “x”, as well as everything else in the address
space. From then on, different things happen in the two processes. The “x” in one address space is
incremented to 2, while the “X” in the other address space is decremented to O.

int main() {

pid t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);
}
The output could be this:

parent:
child :

or this:

child :
parent:

It just depends on which process is scheduled first.
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Here is a program that calls fork() twice. After the first fork, there are two processes. Both proceed

and call fork a second time. This results in a total of 4 processes.

void example () {

printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}

Here is are all possible outputs:

L0
Ll
Bye
Bye
Ll
Bye
Bye

L0
Ll
Bye
Ll
Bye
Bye
Bye

L0
Ll
Ll
Bye
Bye
Bye
Bye

One way to understand this is to draw a process graph. The process graph for this program is

shown below.

In a process graph each node is marked with an action, such as “print L1” or “fork”. The nodes are
drawn from top to bottom in the order the actions occur. All actions are done in a linear sequence,
one after the other, except “fork” and “wait”. A “fork” node will cause a splitting of the paths, while

a “wait” node will be connect two paths.
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LO

!

fork

L1 L1

fork fork
pare‘ry\:\ild pareMild
Bye Bye Bye Bye

Alinear ordering is a fully ordered sequence of nodes such that the nodes occur in the order
given by the graph.

One such linear order is:

L0
fork
Ll
Ll
fork
fork
Bye
Bye
Bye
Bye

This makes sense if we display the process graph like this.
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fork ----y--------------
fork -- fork

ByeBye

This linear order corresponds to one of the possible output sequences we listed earlier. The other

possible outputs each correspond to different linear orders.

Here is another program. Draw the process graph and show all possible outputs.

void example () {
printf("LO\n");
if (fork() != 0) {
printf("L1\n");
if (fork() != 0) {
printf("L2\n");
}
}
printf("Bye\n");
}

Here is another program. Try this one, too.

void example () {
printf("LO\n");
if (fork() == 0) {
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printf("L1\n");

if (fork() == 0) {
printf("L2\n");

}

}
printf("Bye\n");

When a process terminates, it provides an exit status. This exit status will be consumed by some
other process which can then choose to act upon it in some way. Typically the exit status will be
consumed by the process’s parent. After a process terminates, the kernel will retain the exit status
until its parent requests it.

The parent can retrieve a child’s exit status by invoking the wait() system call:
int wait(int *child status)

A parent can create multiple child processes. When the parent invokes wait(), the parent will be
suspended until one of its children terminates. The return value from wait() tells which child
terminated. (The return type is actually pid_t, but int seems clearer to me.)

The parameter child_status is a pointer to an integer variable. The kernel will store information
about the child into this variable. This information includes the exit status, along with other
information, which is why the exit status is limited to 0-255 (8 bits in size).

The child_status word can be checked and decoded by several macros, such as WEXITSTATUS
and WIFEXITED.

Consider the following code. The program begins by calling fork(). After that, the child process
prints “Hello from child” and then terminates. The parent prints “Hello from parent” and then
waits for the child to terminate.

void example() {
int child_status;

if (Fork() == 0) {
printf("Hello from child\n");
exit(0);

} else {

printf("Hello from parent\n");
wait(&child_status);
printf("Child has terminated\n");

}
printf("Bye\n");
}
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[t is impossible to know whether the child will terminate before or after the parent invokes wait(),
but it doesn’t really matter. In any case, after the child terminates, the parent will continue and
print “Bye”.

Here are the possible outputs from this program:

Hello from child
Hello from parent
Child has terminated
Bye

and
Hello from parent
Hello from child
Child has terminated
Bye

There are no other possible outputs.

If the parent invokes wait() before the child calls exit(), then the kernel will suspend the parent
process. The parent process will do nothing more for a while and will wait for the child process to
terminate. Hence the name “wait”.

If the child calls exit() before the parent calls wait(), then the child process will terminate and go
into a post-termination state fondly called being a zombie. In a sense, the process will be
suspended and be made to wait for the parent. A zombie is a terminated process that is waiting to
be fully “dead-and-buried”. Once the parent consumes the exit status, the termination of the
zombie child process will be completed.

Below is another example.

In the first for-loop, fork() is called repeatedly. For example, if N is 5, then fork() will be called 5
times. Each time fork() is called, a child process will be created.

What happens immediately after fork() is called? First, the return value is saved in an array called
pid[]. Then the return value is tested to see if it is zero (the child) or not (the parent).

In the child process, the PID will be zero. The process then executes the “then-statement”, which
causes the child process to terminate immediately. So the child process does not continue to
iterate through the loop. The child exits without creating additional processes. The child adds 100
to i, so the 5 children exit with statuses of 100, 101, 102, 103, and 104.
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In the parent process, the PID will be non-zero, so the parent will skip the “then-statement”.
Instead, it will continue iterating through the for-loop to create the rest of the children. After
creating the 5 children, the parent has also saved their process IDs in the array pid[].

void example () {
pid t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = Fork()) == 0) {
exit(100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child status);
if (WIFEXITED(child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child status));
else
printf("Child %d terminated abnormally\n", wpid);

}

In the second for-loop, the parent process will call wait() 5 times. Each of the children will
terminate, and the parent will consume all 5 exit statuses. Whenever a child terminates, the wait()
system call will return. Then the parent will print out the process ID of the child that terminated,
along with the exit status from that child.

When a process terminates, it becomes a zombie until its exit status is consumed by another
process. The kernel cannot delete all information associated with the process and it must keep
information about the process in its tables until the exit status is requested by the parent process.

Once the exit status is consumed by another process, the kernel will finish the termination and
delete all information about the process.

Therefore, a parent must always ask for the exit status, or else the zombie process will remain in
existence and will take up kernel resources.

When a parent asks for the exit status of a child, we call this reaping the process. In the parent
fails to reap the child, kernel resources are consumed. If this happens a lot of times, then the
kernel can run out of memory and/or space in its internal tables. This can cause a kernel failure, so
software must be careful to reap any children it creates.
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What if a parent dies without waiting for its children? If a child process is a zombie (i.e., the child
has already terminated), then the kernel reaps the child automatically and there is no problem. At
the time any process terminates, the kernel will take care of any zombie children that are waiting.
But what about a child process which is still active and running at the time its parent terminates?

If a parent terminates without reaping one of its children, and the child is still running, then that
child becomes an orphan process. The kernel will automatically re-parent orphans. A child who
has lost a parent will be given a new parent.

Orphan processes are re-parented to the init process. After the parent terminates, its children (if
any are running) will have their parent process changed to the init process. A process can learn
the identity of its parent with the getppid() system call.

The init process is always running and mostly waits for things. One of the events it waits for is the
termination of any of its children. This includes “adopted orphan” children, who lost their parents
and were re-parented to the init process. If one of these adopted child processes terminates, the
init process will reap it by simply called wait() to retrieve the child’s exit status. (Init ignores the
exit status.)

So there is no problem if the parent terminates before its children.

Here is a program that creates a child but fails to reap it. The program creates a child and then
each process prints a message which includes the processes’ PIDs to make things easier to
understand.

The child immediately terminates, but the parent goes into an infinite loop and never invokes the
wait() system call. Therefore the child becomes a zombie and, since the parent never terminates,

the zombie will remain in existence forever, or at least until we do something about it.

void example () {

if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf ("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

If we run this program and then do a ps command (to show process status), we will see the
parent process (which is running) and the child process (which is now a zombie).
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linux> example &

[1] 6639

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 example € parent process

6640 ttyp9 00:00:00 example <defunct> € child process (zombie)
6641 ttyp9 00:00:00 ps

Next, we use the Kill command to terminate the parent. This causes the child process to be reaped
by the kernel. We can use the ps command to verify that both parent and child are now gone.

linux> kill 6639

[1] Terminated
linux> ps
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

In the next example, we have a program that creates a child. This time, it is the child which does
not terminate. The child executes an infinite loop and never calls wait(). The parent immediately
terminates without waiting for its child. Once the parent terminates, the kernel will re-parent the
child to the init process.

void example () {
if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);

}

When we run this program, we see what happens. The ps command shows us that the parent
process is no longer running. We can also see the child process which is stuck in an infinite loop.

linux> example

Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
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PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 example € child process
6677 ttyp9 00:00:00 ps

Our solution is to Kill the child process manually, as follows:

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

What about long running processes that create many children?

As we've seen, if the parent keeps running and does not terminate, then there could be a problem
if the parent fails to reap the children it creates. This is actually an issue with shell programs and
with server programs. Shells and servers tend to create a child process to handle each command
or incoming request and then forget about these children.

We've seen that a parent can wait() to collect the exit status from its children. There is also a
similar system function named waitpid() which can be used to wait on a specific process.

pid t waitpid (pid_t pid, int *status, int options);

But there is a problem: These system calls will suspend any process that invokes them. As the
name “wait” implies, the parent process will be forced to wait until the child terminates. This
could be a very long time. But a program such as a shell or server needs to keep going and process
more commands. It should never freeze up waiting for child processes.

So we need to allow a process to create a child and then go on about its business, doing other
things. The child process will eventually terminate at some point in time, but since the parent
process is busy with other activities, the child process becomes a zombie, taking up resources.
Since the parent is still active, the process is not re-parented to init. So how can the process be
ever reaped?

The solution is to use the signal mechanism in Unix/Linux. The short answer is: whenever a child
process terminates, the SIGCHLD signal is sent to its parent. The parent is interrupted and it can
then stop doing whatever it is doing and reap the child. The parent can then go back to doing
whatever it was doing before it was interrupted.

Signals are discussed in depth later in this document.
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Another important system call is execve(), which has this prototype:

int execve( char *filename,
char *const argv[],
char *const envp[] )

The filename argument points to a string of characters which is the name of an executable
program. The filename is a pathname, which is used to locate a file in the file system. Here are
some example pathnames:

./a.out

myprog
/bin/kill

The execve() system call will transfer control to the named program. There will be no return from
the system call. The main() function in the new executable file will be invoked. And the kernel will
do all of this within the current process.

More precisely, the current process will be changed and re-used to run a new program. To put it
another way: a new process will be created but the process ID of the new process will be the same
as the process ID of the old process. The new process will inherit some things from the old
process, but some things will be changed.

The virtual address space of the old process will be emptied, re-initialized and loaded with the
.text and .data segments from the executable file. All data from the old address space will be lost.

[ suppose we could ask whether it is the same address space or a new address space, but this is a
question of semantics and we’ll leave it to philosophers. For convenience here, we'll use the
terminology of “old” and “new” processes.

From the prototype, we can see that execve() has a return value (of type integer). The returned
value is only relevant if problems occur. The primary problems that can arise are:

« file not found
« file is not an executable
e you don’t have permission to execute this file

If there is a problem, a return from execve() is made in the old process, which can then print an
error message or something.

If the call is successful, the new process will have the same process ID (PID). Furthermore, all files
that were open in the old process at the time of the execve() will remain open in the new process.
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It is normally the case that the old process will have stdin, stdout, and stderr open. These file
descriptors are normally attached to a particular terminal display. After the execve(), the files are
still open, which means that the new program can read and write to the same terminal display.

The shell uses the execve() system call to run commands. When the user types in a command, that
command is nothing more that the name of an executable file. (Well, almost always. A few
commands are built-in shell commands, which are executed immediately by the shell itself. But
most commands are simply the names of executable programs.)

First, the shell will create a new child process. Basically, the only thing the child process does is
perform an execve(). The result of invoking execve() is that command is run. Since it happens in a
child process, each command will be run in its own separate process. This is a good thing, since the
shell can continue running, even if the command does not work correctly and, for example, gets
stuck in an infinite loop.

When we ran the ps command in the examples above, we saw that there were separate processes
for both the shell (tcsh) and the ps command itself, in addition to the processes we were
discussing in those examples.

When the shell creates a child, the same files (including stdin, stdout, and stderr) will remain open.
In other words, every file that is open in the parent will be open in the child. Then, when the child
process invokes execve(), those same files will remain open, even though the process is now
running a new executable program. The effect of this is that when some shell command does [/0,
that I/0 will go to the same terminal display that the shell was using.

Whenever a program is first started, its main() function is passed some information. Here is the
prototype for main():

int main (int argc, char * argv[], char * envp [])
With main() it is possible to leave out some or all of the parameters.
Normally the compiler will complain about missing parameters, but the C language has a special
syntax which allows a variable number of parameters. Another function that has a variable

number of parameters is printf().

It is very typical for the programmer to leave out the envp parameter. The compiler will not
complain if the programmer writes something like this:

int main (int argc, char * argv([]) {

}
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Sometimes the programmer will leave out all three parameters, but it’s a good practice to check to
make sure that argc==0 if no arguments are expected.

How are the argv and envp arguments passed from the old process to the new process by the
kernel during the execve() system call?

The envp array has the same form a the argv array: It is an array of pointers and each pointer
points to a null-terminated string of characters. Furthermore, the final entry in the array is a null
pointer, so it is safe to run through the array looking at each string, while watching for the end by
testing the string pointer against null. The argc argument to main() gives the number of non-null
pointers in the argv array. The argc argument is redundant; it is not really needed and there is no
analog for the envp array.

By convention, the form of the strings in envp is
KEY=value

Equivalently, we can think of them as:
ENVIRONEMENT_VARIABLE=string

“w_n

The KEY is normally capitalized and there are no spaces around the
string of ASCII characters. For example:

sign. The value can be any

MAIL=/var/mail/harry

The envp array is used to transfer environment information from the shell to a running program
giving context information to the program, so the program can understand where it is being
executed. This includes information such as

e Which machine it is running on

e Which OS it is running under

e What language the user speaks (English, French, ...)
e What sort of terminal display it is running on

You can think of the environment information as being held in a number of environment
variables. The KEY is the name of an environment variable and the value is its value.

The actual names and meanings of the environment variables is somewhat system dependent and
somewhat a matter of history and convention. Furthermore, different shells (like sh, csh, tcsh, and
bash) differ in details about the environment variables.

You can use the printenv shell commands to see the current environment. Here is an example
environment from a shell [ was running:
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linux> printenv

LANG=en_US.UTF-8

USER=harry

LOGNAME=harry

HOME=/u/harry

PATH=.:/u/harry/Desktop/Blitz/BlitzTools:/u/harry/bin:/usr/local/sb
in:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:
/usr/local/games:/usr/local/bin

MAIL=/var/mail/harry

SHELL=/bin/csh

SSH_CLIENT=172.30.5.96 53480 22

SSH_CONNECTION=172.30.5.96 53480 131.252.208.85 22

SSH_TTY=/dev/pts/9TERM=vt102

XDG_SESSION_COOKIE=46af7143704ca67c395cc5955416dd69-
1432846022.328694-390702012

XDG_SESSION ID=129

XDG_RUNTIME DIR=/run/user/5031

ICEAUTHORITY=/tmp/.harry ICEauthority

HOSTTYPE=x86_64-1linux

VENDOR=unknown

OSTYPE=linux

MACHTYPE=x86_ 64SHLVL=1PWD=/u/harry

GROUP=faculty

HOST=ruby

REMOTEHOST=172.30.5.96

UPKGCFG=/u/harry/.pkglist

The environment variables can be set using shell commands, such as setenv. (These commands
are built-in shell commands. If the environment variable were changed within a child process, it
would only affect that process, but we need the changes to affect the shell itself.)

When a process invokes the execve() system call, the kernel will initialize the virtual address
space of the new process. Primarily, the kernel will create the stack and initialize the “bottom” of
the stack. Then the kernel will invoke a special function, libc_start_main(). This function will then
call main(). If main() does not invoke exit() but returns to libc_start_main() instead, then
libc_start_main() will invoke exit() itself. So either way, the exit() system call will be invoked.

Here is how the stack is initialized and what it looks like right before main() is invoked.
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, Stack bottom
Null-terminated
environment variable strings
Null-terminated
command-line arg strings
NULL
envp[n-1]
environ 4
(global var) envp [0] e
envp - NULL
(in $rdx) argv[argc-1]
argv o——> » argv[0]
(in $rsi)
argc Stack frame for
(in $rdi) libc_start main stack top

Future stack frame for

The actual startup process is a more complex than this, but this is the general idea. In reality, there
is additional code that gets executed before main() is invoked. The code for libc_start_main() and
anything else that runs will be included in the executable by the linker.

There is one more additional thing about the execve() system call that is interesting and very
useful.

The execve() system call is provided with a filename and this file is normally the executable
program which is loaded and run. The executable file should be in the proper format and, for most
Unix/Linux systems, this means it must be a legal ELF file. If not, it is an error and execve() will
return to the old process.

However, if the first 2 bytes of the executable file are the ASCII characters

#1
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then the kernel will look at the first line of the file and get a filename there, immediately following
these characters. This is taken to be the name of a script interpreter and this is the mechanism
used to run script programs.

Example scripting languages that are executed by interpreters this way are

Perl

Python

Ruby

Shell scripting languages (e.g., sh, csh, tcsh, bash, ...)

A script is a program that is written in human-readable format. Script programs are not compiled.
Instead, the source code is executed directly as-is; in a sense the source code file is the executable.
To execute a script program, an interpreter must be used. The interpreter is a normal compiled
executable program (probably written in C). The interpreter will read the script file and the
interpreter will execute it according to the rules of the language.

Consider what happens when execve() is invoked and the kernel tries to run an executable file
that contains the following characters in the first line.

#!/usr/bin/python
The kernel will go back to the file system, look for, fetch, and execute the program
/usr/bin/python

From the kernel’s point of view, this is just another executable program. But we know it’s the
Python interpreter. This “program” will then read the rest of the script file, ignoring the first line.
The rest of the file is (presumably) a legal Python program which the interpreter will execute.

The Python language and the details of how an interpreter works is another story, for another day.
Other scripting languages work the same way.

Even the shell program itself can be used to execute programs. Normally, we type in one
command after another to the shell program and this input comes from stdin. But what if the
input comes from a file instead? The shell will do the same thing.

This is useful. You can type a bunch of shell commands into a text file (for example, the file might
be called “cmds”. Then you can type the following command, which will execute all the commands
in the file, one-after-the-other by the Bourne shell (which is named sh). This is useful for
automating tasks.

sh < cmds

But we can also modify the file to add this line before all the others:
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#!/bin/sh
Then we can simply type:

cmds
to run all the commands in the file. (You'll also need to change the file to set its permissions to
“executable”.) It turns out that the common shells (sh, csh, tcsh, bash, ...) are full-blown
interpreters. Shells can execute loops and if-statements, making them scripted (i.e., interpreted)

programming languages. The details of shell programming are beyond the scope of this document.

Let’s return to processes and discuss how the shell and kernel work together to create and run
processes.

A computer runs many processes at once.
A process is a program in execution. To execute a program you need (1) memory and (2) a CPU.

At any one moment, the state of a process consists of the contents of memory and the contents of
the CPU registers (including the PC, the program counter).

To suspend the execution of a process, the state (memory and registers) must be saved. To
resume execution, the saved state must be reloaded into the CPU. Only then can the process
continue executing.

Processes are suspended regularly. With multiple processes, the CPU is switched from one
process (which is suspended) to another process. When a process requests something that may
take a while (such as disk I/0), the process will be suspended.

The CPU is switched from one process to another very often, for example, every millisecond. This
creates the illusion that all processes are making progress and that all processes are executing

simultaneously, i.e., concurrently. This is called time-sharing and also multitasking.

With 100 processes and only one CPU, each process will run slower than with only 1 process on
the CPU.

If the CPU switches from one process to another every millisecond and there are 100 processes,
then each process will get to execute about 10 times every second.

Each chunk of time (such as a millisecond of execution) is called a time-slice.
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One millisecond is 1/1000 of a second. If a process gets 10 time slices every second, then it will get
10/1000 of a second of CPU time every second. It makes sense that if there are 100 processes,
each will get 1/100 of the total CPU execution time.

In the old days, a processor chip contained a single CPU. Now a processor chip contains several
cores. A core is a CPU. In addition, the processor may contain cache, main memory, and /0
devices.

When the computer chip has several cores, time-slicing gets more complicated. With 4 cores on
the chip and (say) 100 processes, each process will now get (on average) 4 times as much
execution time per second compared to a single core chip. So each process will get 4/100 of a CPU.
[ Think of it like this: We could put 25 processes on each core, giving each process 1/25 =4/100 of
the total CPU execution time available on a single core. ]

There are several system calls in Unix/Linux to control processes.

fork() used to create a new process

exit() used to terminate a process

wait(), waitpid() used to coordinate with and to synchronize with processes
execve() used to run a new program in an existing process

Programs that call fork() in an infinite loop will try to create an infinite number of processes. Such
a program is called a fork bomb and is a bad thing.

The initial process created when Unix/Linux boots is called init. The process ID of init is 1.

Each process has a process ID, which is a simple integer assigned by the kernel when the process
is created. In addition, each process belongs to a process group.

Processes are related in a parent-child relationship. When a process is created, the new process is
a child of the process that created it. Likewise, the creator of the process is the parent.

If the parent process terminates, the child is assigned to a new parent. Every process has a parent,
except the init process.

One special kind of process is a shell process. This is a process that is executing a shell program
(such as bash). Normally processes are attached to stdin, stdout, and stderr so they can interact
with a human through a terminal interface of some sort.

Some processes are not descendants of shell programs. Such programs are called daemons. They
are not attached to terminal interfaces so they run quietly in the background. An example would
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be a web server process (such as httpd), which is a daemon. It listens for page requests coming in
from the network and sends out pages in response.

A shell is an application program, which means it is just another user-level process running in
user-mode. To the kernel, a shell is just another process and is not treated differently from other
user-level processes.

The shell allows the user to type in commands and then it executes these commands. Some “built-
in” commands are executed immediately but for most commands, the shell creates a new process
and runs the command (which is itself a program) in that process.

Whenever the shell reads a line of input, it examines to find the name of a program. The program
name and the command name are the same. In other words, each command names a program and
when the command is typed, the corresponding program is executed to “do” the command.

To run a command, the shell creates a child process and executes the command program in the
child process. Meanwhile, the parent process (the shell) waits for its child to terminate. When the
command completes and terminates, the parent wakes back up and (in a continuous loop) reads in
the next command line.

Here is an approximation to the shell program.

int main () {
char cmdline[MAXLINE]; /* command line */

while (1) {
/* Print a prompt and read a command line */
printf ("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);

/* Evaluate the command */
eval (cmdline);

}

void eval (char *cmdline) {
char *argv[MAXARGS]; /* Argument list from command line */
char buf[MAXLINE]; /* Holds modified command line */

int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */
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strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if (!builtin_ command(argv)) {
pid = Fork();
if (pid == 0) {
/* Child: Runs user program */
if (execve(argv[0], argv, environ) < 0) {
printf("%$s: Command not found.\n", argv[0]);
exit(0);

}

/* Parent: Wait for foreground job to terminate */
if (ibg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error("waitfg: waitpid error");
} else { /* or print PID of background job */
printf("%d %s", pid, cmdline);
}
}

return;

}

Previously, we've seen the wait() system call, which waits for any of its child processes to
terminate. This code uses the waitpid() system call which is similar but waits for a specific child
to terminate.

When the shell runs a program, it is either as a foreground job or as a background job. The term
job is historical and means “a process”. A foreground job causes the shell to be suspended. The
shell will wait until the foreground job is complete before it prints out the next prompt and reads
the next command line.

The following shows the shell syntax to create a foreground job.
linux> sleep 7200; rm /tmp/junk
The sleep command takes the number of seconds. The semicolon executes one command and,

after it completes, executes the second command. This command line will cause the shell to wait
for 7200 seconds (2 hours) plus the millisecond it takes to remove the file.
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It is better to make this a background job. Use the following syntax (with & at the end of the
command line) to create a background job. The shell will not wait and will print the next prompt
almost immediately.

linux> (sleep 7200 ; rm /tmp/junk) &
[1] 907
linux>

The shell program above has a problem. For a foreground job, the shell waits for the child to
terminate. But for a background job, the shell will continue without waiting. Thus, ajob runinas a
background process will never get reaped.

Processes that complete must be reaped. This means that another process (normally the parent)
will wait for the exit status of the child. This is done with the call to waitpid().

When a process terminates execution, the OS will clean up after it. The OS can reuse the memory,
close open files, etc. However, the OS must remember about the process. In particular, the OS must
keep the exit status around. Why? Because some other process (normally the parent) may need to
see the exit status.

When a process terminates, it becomes a “zombie”. The process is done executing instructions
and is pretty much dead-and-gone, but the kernel cannot get rid of the job entirely. Once the
parent process asks for the exit status (with a call to wait or waitpid), then kernel can then get rid
of the job. At this point, we say the zombie is reaped. After that, nothing is left of the process.

But how can the shell program reap background jobs? We don’t want the shell to wait for the
background job; we want the shell to go on with life, prompting and executing other commands.

But if the shell fails to reap child processes, then the kernel can accumulate a bunch of unreaped
zombie processes. This could result in failure to release kernel resources and result in kernel
failure.

If there are too many processes (including zombies), then a user may exceed his/her quota. You
can see what your process limit is with commands like:

linux> limit maxproc # for csh
maxproc 31818

linux> ulimit -u # for bash
31818

A child process can terminate at any time. How can a process be notified about an event that could
occur asynchronously? Asynchronous means “at any time”. Answer: Use a signal.
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A signal is a sort of message that is sent from one process to another process. However, it is a
message with no content. The only information is that the signal happened. Signals are used to
notify a process that some event has occurred.

Signals are a bit like exceptions and interrupts. A hardware interrupt (such as the disk controller
interrupting the CPU to tell it that an I/0 operation has completed) is implemented in hardware. A
signal is a software analog of a hardware interrupt. Signal transmission is implemented within the
kernel. The kernel will notify the process that a signal has been sent to it.

There is a small number of different types of signals. There are only about 30 different signal types
and each signal type is given a number.

Each signal is also given a name. The signal name is simply shorthand for an integer in the range 1
to 30.

Here are some of the common signals:

2 SIGINT Interrupt (e.g., control-c from keyboard)
8 SIGFPE Floating point exception

9 SIGKILL Kill program

11 SIGSEGV Segmentation violation

14 SIGALRM Timer signal

17 SIGCHLD Child stopped or terminated

18 SIGTSTP Suspend process

19 SIGCONT Resume a stopped process

A signal is sent to a destination process. Normally another process will send the signal by invoking
a system call to send the signal. However, some signals can be sent for other reasons, such as
something the process itself did (such as floating-point-exception, seg-fault, etc.)

It is up to the kernel to take it from there and deliver the signal to the process.

The system call to send a signal is:

kill (pid, signal)

There will be some time between the moment the signal is sent and the signal is acted upon.
During this interval, the signal is pending. Once the signal is received, it is no longer pending.

When a signal is received, one of these actions will occur:
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(1) The signal is ignored.
(2) The process is terminated.
(3) A signal handler is executed. In this case, we say the signal is caught.

A signal handler is a function that exists within the process receiving the signal. The signal
handler is run as a normal user-level function. It is called and, when complete, it returns.

A signal handler is similar to an exception handler in the kernel. The similarities are: Each is a
function; each is executed in response to some outside event. The differences are: A signal handler
is invoked in response to a signal; an exception handler is invoked in response to a hardware
exception; a signal handler is invoked by the kernel; an exception handler is invoked by the CPU
hardware.

From the point of view of user-level program code, here is what happens: instructions are being
executed one-after-the-other. Suddenly after the completion of one instruction, the signal handler
is called (i.e., invoked). The handler executes to completion. When the signal handler function
executes a return instruction, control returns to the instruction stream that was interrupted.

A signal that has been sent but not received is pending. There can be at most one pending signal of
each type. If a second signal is sent before the signal is received, then nothing happens; it is
dropped and ignored, as if only one signal was ever sent.

In other words, signals are not queued.

A process may block signals. If a signal is sent, but that signal type is blocked, then the signal
remains pending. If and when the process ever unblocks that signal, the signal will be received. If
the same type of signal is sent several times while that signal type is blocked, then all but the first
are ignored, since signals are not queued or counted. When unblocked, the signal will only be
acted upon one time, even though it was sent multiple times.

The kernel implements signals by maintaining two bit vectors for each process. Each bit vector is
a 32-bit word and each bit position in the word corresponds to one type of signal. For example, bit
2 is for SIGINT and bit 9 is for SIGKILL. This is why the number of signal types is small: there are
only 32 bits available in each bit vector.

One bit vector is called “PENDING”. If a bit is 1 it means a signal for that type has been sent but not
received. The other bit vector is called “BLOCKED”. If the bit is 1 it means that the process has
blocked that type of signal.

When a signal is sent the kernel sets a bit in PENDING to 1. When the signal is received, the kernel
clears the bitto 0.
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A process can block and unblock signals by invoking the system call sigprocmask. This system
call just sets or clears bits in BLOCKED.

Every process has a process ID (called a PID) which is a unique integer that identifies the
process. The PID is assigned by the kernel when the process is created.

Each process belongs to a process group. The process group is identified by an integer called the
process group ID (PGID). Process group IDs are just the IDs of some process, which we can think
of as the head process of the group. Typically, a parent process will be the leader of a process
group containing its child processes.

A process may change its own PGID and the PGID of its children.

When the shell creates a new process, it puts that process in a new process group. The PID of the
newly created process will become the PGID for this new process group.

When a new process is created with fork(), it will belong to the same process group as its parent.

The shell can be used to create a foreground job. You can use the shell to create some
background jobs as well.

A job is normally a single process running a command. But some processes will fork children. All
the processes in a job (there may be more than one) will belong to the same process group. Thus a
shell foreground or background job is actually a process group. Often a shell job will consist of a
single process, but some processes create children so there can be several processes in the job.

When a signal is sent to a process, it is also sent to all the processes in that group. This is handy.
When you type control-c to send SIGINT to a program, the signal will be sent to that process and
all the other processes in that group. This allows you to interrupt a process and all the child
processes it has created with a single control-c. Typing control-c will affect an entire shell job,
even if the job contains several processes.

The system call getpgrp() is used to obtain the PGID of the current process. The system call
setpgid() is used to change the group of some process.

The shell command Kill is used to send a signal to a process or a process group. The following
command will send SIGINT (control-c) to the process with PID 12345.

kill -2 12345

You might need to type:
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/bin/kill -2 12345

If a process is not responding to SIGINT (control-c) it could be a problem. Perhaps the program
has decided to install a signal handler for SIGINT and the handler has a bug. How can you
terminate this program? You must send it SIGKILL.

kill -9 12345
SIGKILL cannot be caught, so this signal will always terminate the process.

This is not a very good way to terminate processes, but is occasionally necessary when debugging
programs that catch SIGINT. [ do not recommend terminating processes that you do not
understand. Many processes communicate with each other and if one of them suddenly
disappears, it may confuse the other processes and result in unpredictable behavior for your
computer.

By placing a hyphen in front of the PID, it will cause the kill command to send the signal to a
process group, rather than a single process.

kill -9 -12345

Typing control-c will send SIGINT to all processes in the foreground process group. The default
action is to terminate the process(es).

Typing control-z will send SIGTSTP to all processes in the foreground process group. The default
action is to stop (i.e., suspend) the process(es). This is useful if you wish to move the job to the
background so you can keep using the shell to do other things.

The shell command bg will put a suspended job in the background. The job will resume
execution, but the shell will now be free to prompt for commands. Anything you type will go to the
shell and not the background job. The shell command fg will move a job to the foreground. After
this command, all typed input will go to the foreground process group and not to the shell. When
the foreground job terminates, the shell will once again prompt for the next command line.

You can use the jobs command to see what jobs the shell is managing. If there are several
suspended jobs, you can specify which job you mean by providing a number to the bg or fg
command.

The ps (process status) command will print out which processes are running.

ps < shell and shell jobs; simple display
ps axl < everything on the computer, lots of info

With ps, you can see the status of various processes:
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S = Sleeping
T = Stopped
R = Running
+ = Foreground

You can also see process IDs as well as other info.

The top command will print out the active processes, in order of which are most active. This is an
interactive display and will change continuously. Hit control-c to terminate this command.

Below is some example code.

The first for-loop creates a bunch of children. Let’s say N=5 so it creates 5 children. It stores the
PID of each child in an array called pid[]. Each child is in an infinite loop.

The second for-loop sends the SIGINT signal to each child process. It goes through the pid[] array
and invokes the system call kill() once for each of the 5 processes.

The final for-loop waits for each child process. It calls the wait() system call N=5 times.
The wait() system call is used like this:

pid t pid;
int child_status;
pid = wait (&child status);

The type pid_t is essentially an int, so wait() returns the process ID (an integer) of the process that
has terminated. There are 5 children, so it could be any one of them. The children will not
necessarily terminate in any particular order. Due to the unpredictable scheduling of the kernel,
they may terminate in a different order than they were created.

The wait() function is also passed the address of another integer. It will store the exit status of the
process in this integer. Whenever a process terminates, it will provide an exit status. The
convention is that zero means “all okay; no errors” and anything else means “error”. This value is
provided in calls to exit() or as the return value from main(). It is restricted to 0-255.

This code uses two macros to interrogate the exit_status value. In particular, the integer will
contain more info than just the exit status from the process. So the WEXITSTATUS() macro is
used to extract the exit status.

void example ()
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pid t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1l) ;
}

/* Parent: Terminate all child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);
}

/* Parent: Reap terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED(child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child status));
else
printf("Child %d terminated abnormally\n", wpid);

The kernel switches from process to process in intervals. Assuming there is only one CPU (i.e., one
core), then only one process can execute at a time. The others are said to be ready (also called
waiting); they are not blocked. Therefore a running process is either actually executing on the
CPU or is waiting for its turn.

The kernel will execute a process for one time-slice. Then the kernel will perform a context
switch to another process. When a process is executing on the CPU, the kernel itself is waiting.
The kernel can get control several ways:

(1) A timer interrupt occurs. This event causes a hardware asynchronous interrupt, which is a
type of exception. The kernel exception handler will get control and, as a result, the kernel can do
a context switch.

(2) The process makes a system call. This event is also a type of exception and the kernel will get
control.
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(3) Some other /0 device causes an asynchronous hardware interrupt. Perhaps the disk
controller is raising the exception to indicate that a disk read or write has completed. Perhaps the
user has hit a key and the keyboard/mouse interface is raising the exception. Or the network
interface has received a data packet.

Regardless of how the kernel gets control, the kernel will take care of whatever caused the
exception. Then it will choose which process to execute next. It may return to the same
interrupted process or it may choose a different process. This is the problem of process
scheduling.

Before the kernel begins executing a new time slice for a process, it will check to see if there are
any signals that are pending for that process. If so, the kernel will try to deliver them.

Recall the PENDING and the BLOCKED bit vectors that exist for each process... The kernel
computes

PENDING & ~BLOCKED
A bit vector is one good way to represent a set, as long as the “universe” of possible set elements is
small. In our case, there are only 30 different signals. The set called PENDING is represented by a
bit vector. A “1” means that element is in the set. A “0” means that element is not in the set. The bit

vector PENDING is the set of signals that have been sent but not received.

The bit vector BLOCKED represents the set of signals that are currently blocked by the process.
These are the signals that the process just doesn’t want to hear about.

The computation
PENDING & ~BLOCKED

uses bit vector operations & for logical AND, as well as ~ for logical NEGATION (or “bitwise
complement”). Bitwise Boolean operations can be viewed as set operations:

& performs set intersection
| performs set union
~ performs set complement

So the kernel computes the set of signals that are “pending and not blocked”. If there are any such
signals, then the kernel will act on them, one by one. Typically this means that the interrupt
handler is invoked.

So, if there is a signal that has been sent (and is therefore pending) which has not been blocked by
the process, the kernel will execute the corresponding interrupt handler before the kernel returns
control to where the process last left off execution. Effectively, the kernel “inserts” a call right into
the code of the process.
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When delivering a signal, the kernel will also mark that signal as no longer pending, which it does
by clearing the corresponding bit in PENDING to 0. After the handler returns, the kernel will check
to see if there are any other PENDING but not BLOCKED signals. If so, it will execute their
handlers.

Finally, when no more signals need to be handled, the kernel will return to the process where it
left off.

Each signal type has a default action. The possibilities are:

TERMINATE the process

TERMINATE the process (and “dump core”)
IGNORE the signal

SUSPEND the process

A “core dump” means that the logical address space is copied to a file. This is useful for debugging.
If something goes wrong with a process, the “core dump” can be examined (with a tool like gdb) to
assist in the debugging to try to figure out what happened.

(Early computers used iron ferrite cores to store each bit in memory. Back then, memories were
small and a “core dump” meant printing the entire contents of memory on paper. This was in the
days before tools like gdb existed and debugging often meant analyzing core dumps by hand.)

A process can install a signal handler with the system call signal().

handler_t *signal (int signum, handler_t *handler)
The behavior for the signal signum is changed from whatever the default or previous action was.
This system call is used to install a signal handler with the kernel. Later, when that signal is sent,
the kernel will know which handler to invoke.
The handler argument is a function pointer: it points to the function that is to be used when that
signal is received. This argument can also be SIG_IGN, which means “ignore the signal” or

SIG_DFL, which means “revert to the default behavior.”

The following code shows an example using this system call.

void int handler(int sig) {
safe printf("Process %d received signal %d\n", getpid(), sig);

Filename: Exception-Handling.docx Page 47 of 59
Created: December 1, 2015
Last updated: December 9, 2015 12:13 PM



exit(0);
}

void example () {
pid t pid[N];
int i, child_status;
signal (SIGINT, int handler);
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
while(l); /* Child: infinite loop */
}
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);
}
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED(child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child status));
else
printf("Child %d terminated abnormally\n", wpid);

}

The code begins with a signal handler function called int_handler() which will print a message and
then terminate the process.

The first thing this program does is to install this signal handler using signal(). Whenever the
process receives SIGINT (control-c) it will catch the signal, print the message, and then call exit().

The first for-loop creates a bunch of child processes, as before. Each child process simply executes
an infinite loop. Note that each child is an identical copy of the parent. This means that each child
will have a handler installed for SIGINT.

The parent continues execution after creating its children. The parent sends a SIGINT signal to
each of its children in the second for-loop.

Finally, the parent waits N times, and collects the exit status for each of its children.

This is good behavior of the parent. It is reaping its children, so they are not left as zombies,
although the parent itself terminates quickly anyway, so they would not remain zombies for long.
When a parent terminates, its child processes are re-parented to the init process. The init process
is continually reaping, so these zombie children would get reaped almost immediately after the
parent terminates, if the parent had failed to do it.
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Here is output from this program. Note that the signaling is done in order, but the handlers are not
executed in the same order. Finally, the reaping occurs in a slightly different order from the
handlers.

linux> ./example

Killing process 25417

Killing process 25418

Killing process 25419

Killing process 25420

Killing process 25421

Process 25417 received signal
Process 25418 received signal
Process 25420 received signal
Process 25421 received signal
Process 25419 received signal 2

Child 25417 terminated with exit status
Child 25418 terminated with exit status
Child 25420 terminated with exit status
Child 25419 terminated with exit status
Child 25421 terminated with exit status
linux>

NDNDDNDDN

O OO oo

Each child in the above example has its own virtual address space. Therefore, each has its own
copy of the code (the .text segment), its data (the .data segment) and its own heap and stack. Each
process has its own (copy of the) handler and each handler is executed in a separate address
space.

But every signal handler lives within the address space of some process. It is not a separate
process.

Signal handling in Unix/Linux is tricky and there are many opportunities for confusion and bugs.

The different Unix/Linux operating systems have slightly different semantics and this makes code
portability tricky when signals are involved. Be careful.

What happens if a process has invoked a system call and is waiting on its return when a signal is
received? The handler may be executed, but what happens to the system call? It may return with
an error code (see the EINTER value of errno) or the system call may just get restarted and return
normally. Different OSes do different things. Ugh!

If you must write a signal handler, here are some guidelines.
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(1) Keep the handler simple. For example, set a global variable and return.

(2) Be careful when you invoke system calls within a handler. Some system calls are “async-
signal-safe” and others are not. Only invoke system calls that are async-signal-safe. Unfortunately,
common system call like these are not safe:

printf(), malloc(), exit()

(3) Do not modify the global variable errno. If you make system calls within a handler, errno will
be changed. So save errno first and restore errno later.

(4) Be careful with shared data structures. If a signal handler might run and might access some
data structure, be aware that this could happen at any time! If this could happen, you need to block
signals whenever your other code accesses the shared data, to make sure a signal handler doesn’t
“sneak in” and modify the data while your code is using it.

(5) Declare shared variables using the C keyword volatile. Compilers try to put variables in
registers and leave them there as long as possible. But if the variable is in a register, the other code
cannot access it. The volatile keyword forces the compiler to keep the variable in registers for the
minimal amount of time and to return it to memory as soon as possible.

In a single-threaded process, there is only one thread of execution. In the traditional Unix/Linux,
each process had only one thread. But modern systems allow multiple threads in a single address
space. This is good because these threads can share variables and communicate very efficiently.

However with multiple concurrent threads executing in a single address space, care must be taken
to make sure the threads synchronize with each other properly. This is a fascinating topic,
explored in great length in the Operating Systems class.

Normally, a function is called and returns and you can think of a series of calls and returns like a
set of nested parentheses. Each open parenthesis “(“ is a “call” and each close parenthesis “)” is a
return.

c CCO O0)y)0) 0))

Of course you can have recursion:

(CCCCCeeCNNNNNII)

With recursion, you can have a single function that is active many times at one moment. However,
each invocation (except one) is momentarily suspended while the functions it called are executing.
So there is a simple concurrency control mechanism: there is not really any concurrency at all. The
caller is suspended while the callee executes.
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With a single thread of execution, a simple stack will suffice to keep functions straight. At any one
moment, only one invocation of a function is actively executing. All others are frozen until the
currently executing function completes and returns.

However, with multiple threads, a single function can be active in different threads. One function
can be running concurrently with itself. With no further action on the part of the programmer,
there is no concurrency control. If the functions reads and modifies a non-local variable, then
there could easily be a race condition.

Some functions will work properly in a multi-threaded process and others will not. A function that
will work properly in a multi-threaded environment is said to be reentrant.

Reentrant functions generally only use local variables and avoid the use of global variables. If the
function does access shared, global variables, it must be done carefully, since other copies of the
same function will access the same variables concurrently. So all accesses to non-local variables
must be carefully managed.

A function is async-signal-safe if it is reentrant or non-interruptible. Some system calls are asynch-
signal-safe, and some are not.

Async-signal-safe:
_exit, write, wait, waitpid, sleep, kill

Not async-signal-safe:
printf, sprintf, malloc, exit

The Bryant and O’Hallaron textbook authors provide a library of functions you can use within
signal handlers. They call their library of functions “Sio” (Safe 1/0 Library).

ssize t Sio_puts(char s[]) /* Put string */
ssize t Sio_putl(long V) /* Put long */
void Sio_error(char s[]) /* Put message & exit */

Here is an example handler using these functions.

/* Safe SIGINT handler */

void sigint handler(int sig) {
Sio puts("You hit ctrl-c!\n");
sleep(2);
Sio puts("Let me think...");
sleep(1l);
Sio puts("Good bye!\n");
_exit(0);

}
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Here is the output from this code:

linux> ./sigintsafe
<ctrl-c>

You hit ctrl-c!

Let me think...Good bye!
linux>

Here is a program that contains a subtle bug.

The main function begins by installing a signal handler for SIGCHLD. This signal is sent every time
a child terminates. Then it has a for-loop that creates a bunch of child processes. Each child waits
for one second and then terminates.

Each time a child terminates, a SIGCHLD signal is sent to the parent.

In response, the handler in the parent invokes wait() to reap the child and get the child’s exit
status. The program also maintains a count “ccount” to keep track of how many unreaped children
are left. When the handler reaps a child, it decrements this count.

After creating the child processes, the parent goes into a spin-loop.

A spin-loop is a way to wait for an event. The idea is that the spin-loop simply tests the condition
and then repeats. A spin-loop may waste some CPU time because the loop might execute hundreds
or millions of times, continually testing for the condition. Nevertheless, a spin-loop will work and
in some situations is actually the best design choice.

Eventually the count should be decremented to zero and then the parent should exit. But, as we
said, there is a bug.

int ccount = 0;

void child handler(int sig) {
int olderrno = errno;
pid t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio puts("Handler reaped child ");
Sio putl((long)pid);
Sio puts(" \n");
sleep(1l);
errno = olderrno;
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void example () {
pid t pid[N];
int i;
ccount = N;
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep(1l);
exit(0); /* Child exits */
}
}

while (ccount > 0) /* Parent spins */

4

}
Here is the output:

linux> ./example

Handler reaped child 23240
Handler reaped child 23241
... program hangs here!

Only two children are reaped (we assume N is larger than 2), and the program hangs.
The problem is that signals are not queued. Notice that there is a call to sleep() in the handler.

You should always be able to insert a call to sleep() anywhere in your code without causing it to
fail. A call to sleep() should only slow a program down, never change its output!

But this code has a race condition. A race condition is a type of bug. The incorrect behavior is
timing dependent. Sometimes the program might work okay, while other times the program might
fail. With a race-condition, the behavior of the program is dependent on the vagaries of the
kernel’s process scheduler. Race-conditions are almost always very subtle, hard to find, and hard
to understand. They are probably more common that we appreciate, since the program works
most of the time and when it fails, the failure is not always repeatable.

The authors have inserted a call to sleep() in order to increase the odds that the race condition
bug will manifest itself and incorrect behavior will be observed.

During the sleep() waiting, several children may terminate. Several SIGCHLD signals will be sent,
but they are not queued. Only one signal will be received, regardless of how many are sent. So
while processing the first child’s termination (including the long sleep), the remaining children all
terminate. Many signals are sent during this time, but only one will be received.
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So after the handler completes, the kernel will check to see if there are any new signals that are
PENDING but not BLOCKED. The answer is “yes”, the SIGCHLD signal was sent many times. So the
signal handler will be invoked a second time, but only once no matter how many times the signal
was sent. The count variable will not be decremented correctly so the spin-loop never terminates.

Here is the fix that the authors propose:

void child handler2(int sig)

{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio puts(" \n");
}
if (errno != ECHILD)
Sio_error("wait error");
errno = olderrno;
}

What they suggest is to try to reap as many children as possible in the handler.
However their code seems to be flawed.

Imagine that the while-loop picks up a bunch of terminated children and then, when there are no
more terminated children, the loop terminates. But next, notice that there is a moment in time
directly before the code restores errno. Imagine that in this moment, several children all
terminate. Multiple signals will be sent and some will be lost.

This shows how tricky writing concurrent code is. This example should be a lesson on the extreme
skill required in writing concurrent code and the ease with which race conditions can be
overlooked.

The C language provides two functions called setjmp() and longjmp() that have unusual
properties. These functions are not system calls.

Together, setjmp() and longjmp() provide a way to jump from one place in a program to another
distant location. The two locations do not even need to be in the same function!
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The typical use is to deal with errors. Imagine that you have a program main() that calls some
function foo1() which calls some other function foo2() and so on. At some point, the call stack may
be quite deep:

main = fool = foo2 = foo3

While executing in foo3, imagine that an catastrophic error occurs. Typical programs print an
error message and call exit(), but imagine that this is not acceptable. Instead, the program needs to
return to some previous function, such as foo1() and keep going.

You can use setjmp() and longjmp() to achieve this functionality.

Languages like Java and KPL provide a try-throw-catch mechanism. This is a much better
approach, but it was not invented until after the C language was well established. The try-throw-
catch mechanism can be viewed as a cleaned-up, safe way to do this sort of thing. The setjmp() and
longjmp() mechanism is unsafe, in the sense that if you make an error, you can crash your
program.

Here’s how to do use these functions. First, there is a variable called the “jump buffer” which you
must include in your program. There is a type called jmp_buf for variables like this. We'll call our
variable jb. Basically, jb is just an array of bytes and the exact nature is processor / system
dependent.

jmp_ buf jb;

In our example, we want to jump from foo3 back into fool. So when we are in foo1, before we call
foo2, we will call setjmp:

i = setjmp (jb);

The call to setjmp() will return 0. What setjmp() does is save the current state of all the CPU
registers, including the PC and the stack pointer in the array of bytes we named jb.

Then foo1() calls foo2() which calls foo3(). Now assume the catastrophic error condition
(whatever it is) is detected and we are ready to completely abandon foo3() and foo2() and jump
back into foo1(). So within foo3() we invoke longjmp():

longjmp (jb, 123);

We provide the longjmp() function with jb, which contains all the info needed to return. We also
provide an integer, such as 123.

What happens next is that there is no return from the longjmp() function. Instead there is a return
from the original setjmp! Yes, we already returned from that function way back when we

Filename: Exception-Handling.docx Page 55 of 59
Created: December 1, 2015
Last updated: December 9, 2015 12:13 PM



originally called it. Remember? It returned a 0. But now it returns again, only this time it returns
whatever integer we supplied to longjmp(). In this example, setjmp() will return 123.

These functions work as follows. Setjmp when first called will save all the registers as they are at
that moment. Then later, when longjmp is called, it will take those saved register values and load
them into the CPU’s registers. When longjmp reloads the stack pointer, it will effective trim the
stack back to where it was when setjmp was originally called. When longjmp reloads the PC, that
will effectively cause a jump back to the instructions within setjmp.

Below is an example demonstrating setjmp() and longjmp().

In this example, main()will call foo() which will call bar(). We might detect a “catastrophic error”
in different places. The error might occur in foo() or it might occur in bar(). Regardless of where
the error occurs, we want to return to main() and deal with the error there.

The main function will first call setjmp to capture the state. Setjmp returns 0 so the switch
statement will select “case 0” and the function foo() will be called. If there are no errors, then foo()
will return. We then “break” out of this case and the switch statement is finished and main() then
returns.

The function foo() will do some stuff including checking for error conditions and calling bar(). The
function bar() will also do some stuff and check for error conditions.

There are a couple of error conditions that might invoke the jump back to main. If some condition
called “errorXXX” occurs or if “errorYYY” occurs, we want to break off execution and immediately
return to main().

This code uses the integer to communicate which error caused the jump. If foo() detects
“errorXXX” , then number 1 is used. If bar() detects “errorYYY”, then 2 is used.

For example, if bar() detects that errorYYY has occurred, it invokes longjmp() with 2. In this case,
the next thing that happens is that we return a second time from the call to setjmp(). So now we
are back in main() and setjmp() returns, but this time it returns the number 2.

As we saw, after invoking setjmp(), the switch statement tests the return value from setjmp(). This
is convenient. If the value is 2, the switch will select “case 2” and do whatever is appropriate to
deal with an occurrence of errorYYY.

jmp_buf jbuf;

int main()

{
switch(setjmp(jbuf)) {
case 0:
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foo();
break;

case 1:
printf("Detected an errorXXX condition in foo\n");

break;

case 2:
printf("Detected an errorYYY condition in bar\n");

break;

default:
printf ("Unknown error condition\n");

}
}

void foo(void) {

if (errorXXX)
longjmp(jbuf, 1);

i;;ar();
}

void bar(void) {

if (errorYYY)
longjmp(jbuf, 2);

The long jump mechanism can be misused by the programmer. The requirement is that we must
never jump back into a function that has already returned. Consider this code:

jmp_buf jbuf;

foo(

main() {
)i
bar();

}

foo() {
if (setjmp(jbuf)) {
}

}

bar() {
longjmp(jbuf, 1);
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}

The main() function calls foo() and after foo() returns, main() calls bar(). Within foo(), there is a
call to setjmp() which captures the state of the process at that moment. But then foo() returns.
The stack frame for foo() is popped off the stack and the stack frame for bar() is pushed onto the
stack. Then, within bar(), there is a call to longjmp(). This will restore the registers and we will try
to make a jump back to the moment when setjmp() was called.

Suddenly we are back executing code in foo(). But we can’t just return to foo(): the stack is all
messed up! The frame for foo() is gone and has been overwritten with the frame for bar(). The
local variables for foo() - if any - have been overwritten. And when foo() tries to return it is a
problem, since foo()’s return address has most likely been overwritten, too. So this program can
easily crash or behave in unpredictable ways.

Here is an example program combining signal handling with long jumps. Since we are jumping
in/out of signal handlers, we use a variation called sigsetjmp() and siglongjmp().

#include "csapp.h"
sigjmp buf jbuf;

void handler(int sig) {
siglongjmp(jbuf, 1);
}

int main() {
if (!sigsetjmp(jbuf, 1)) {
Signal (SIGINT, handler);
Sio puts(”STARTING\n");
} else {
Sio puts(”RESTART\n");

}
while(1l) {

Sleep(1l);

Sio puts("processing...\n");
}

exit(0); /* Control never reaches here */

}
Here is some output:
linux> ./restart

STARTING
processing...
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processing...
processing...
<control-c typed here>
RESTART
processing...
processing...
<control-c typed here>
RESTART
processing...
processing...
processing...

The main program begins by calling sigsetjmp() as its first action. Then it prints “STARTING” and
enters an infinite loop, causing it to print “processing...” every second. When the user types
control-c, the handler is invoked. All the handler does is invoke siglongjmp(). This causes a return
from sigsetjmp(), which effectively restarts the main() function from the beginning. Only the
second time, the call to sigsetjmp() returns the number 1. This causes main() to print “RESTART”
and then restart the infinite loop.

For this program, the user will need to use the kill command.
In my experience, [ have never had reason to use setjmp() and longjmp() in a program. However, |

can imagine a situation in which they could be useful and in which nothing else would work quite
as nicely.
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