CS-322 Target Generation, Part 1

v

Lexer

v

| Parser

(I

|Type Checking

P

Front-End <

| Intermediate Code Generation

Intermediate Representation

.t
ot

Symbol
Table
Information

................................

N7~

“... Intermediate Representatio

Y
.
e
A

Final Code Generation

Back-End < |

Targe
A
| Assembler / Linker |

Code (e.g., SPARC “.s” file)

Executvable (e.g., an a.out file)

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

v

Lexer

v

| Parser

v
|Type Checking
v

(I

Front-End<

| Intermediate Code Generation

Intermediate Representation

....
K

Symbol
Table
Information

N~

“.. Intermediate Representatio

;
.
.
.
‘o
PN

Final Code Generation

Back-End < |

I
Byte Codes

\ 4
|Virtual Machine (Interpreter) |

" I Java Approach

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

v

4 | Lexer
v

| Parser

|Type Checking

Front-End< v I\

| Intermediate Code Generation

Symbol
Table

Intermediate Representation .
Information

.t
e

................................

i Optimization
> T]
«.,\Intermediate Representatio
------ N
Back-End < | Final Code Generation
I
L Machipe Code

CPU

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Output to Assembly Code (vs. machine code)

Breaks code generation task into 2 phases
* Compiler back-end
* Assembler

Easier to debug compiler output!

Slightly slower (?)

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Porting the Compiler?

Porting to a new target machine architecture.
Re-write the back-end

Intermediate Code

v

| Back-End |

v
Target Code

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Porting the Compiler?

Porting to a new target machine architecture.
Re-write the back-end

Intermediate Code

v

| Back-End |

M
Target Code

Specification-Driven Approaches
“Code Generator-Generators”

Intermediate Code

* CPU Specification
| Bacl;-End [— (e.g., set of rules)
Target Code

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Requirements
* Target code must be correct.

* Target code should be efficient.
* Back-end should run quickly.

Want optimal code sequences?
NP-Complete
Generate all correct code sequences
... and see which is best
Optimal?
The target program...
... executes faster
... takes less memory

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Code Generation Algorithms
Algorithm #1 < Easiest; We’ll use for PCAT

Algorithm #2
Algorithm #3 < Most complex

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Code Generation Algorithms
Algorithm #1 <— Easiest; We’ll use for PCAT

Algorithm #2
Algorithm #3 < Most complex

Example Target Machine
2-Address Architecture

source destination
mov x,r0

add y,r0e—
mov r0, z\

r0:=r0+y

store back into memory

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Code Generation Algorithm #1
Statement-by-statement generation
Code for each IR instruction is
generated independently of all other IR instructions.

IR Code:
a :=b + c
d :=a + e

© Harry H. Porter, 2006

10

CS-322 Target Generation, Part 1

Code Generation Algorithm #1
Statement-by-statement generation
Code for each IR instruction is
generated independently of all other IR instructions.

IR Code:
a :=b + ¢
d :=a + e

Target Code:

mov b,r0
add c,xr0 a :=b + ¢
mov r0,a
mov a,r0
add e, r0 d :=a + e
mov r0,d

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

11

Code Generation Algorithm #1
Statement-by-statement generation
Code for each IR instruction is
generated independently of all other IR instructions.

IR Code:
a :=b + c
d :=a + e

Target Code:

mov b,r0
add c,r0 a:=b+c — —
mov r0,a This instruction is

totally unnecessary!!!
mov a,r0 ~

add e, r0 d :=a + e
mov r0,d

© Harry H. Porter, 2006

12

CS-322 Target Generation, Part 1

Code Generation Algorithm #1
Statement-by-statement generation
Code for each IR instruction is
generated independently of all other IR instructions.

IR Code: ALSO: Registers are not
a :=b + c used effectively.
d :=a + e

Target Code:

mov b,r0
add c,xr0 a :=b + ¢
mov r0,a
mov a,r0
add e, r0 d :=a + e
mov r0,d

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

13

Machine Idioms

IR Code: X :=x + 5
Target Code: mov x,r0
add 5,r0
mov r0,x

® =0

© Harry H. Porter, 2006

14

CS-322 Target Generation, Part 1

Machine Idioms

IR Code: X :=x + 5
Target Code: mov x,r0
add 5,r0
mov r0,x
C
IR Code: X :=x + 1
Target Code: mov x,r0
add 1,r0
mov r0,x

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

15

Machine Idioms

IR Code: Xx :=x+ 5
Target Code: mov x,r0
add 5,r0

mov r0,x

@
IR Code: x :=x + 1
Target Code: mov x,r0
add 1,x0
mov r0,x
Target Code: mov x,r0

inc r0
mov r0,x

© Harry H. Porter, 2006

16

CS-322 Target Generation, Part 1

Machine Idioms

IR Code: X :=x + 5
Target Code: mov x,r0
add 5,r0

mov r0,x

C

IR Code: x :=x + 1

Target Code: mov x,r0
add 1,r0
mov r0,x

Target Code: mov x,r0
inc r0
mov r0,x

Target Code: inc X

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

17

Using Registers

Goal: Keep some variables in registers (instead of in memory)

Problem: Not enough registers!

Register Allocation Problem

Which variables will reside in registers?
[... at a given point in the program.]

Register Assignment Problem

Which register will we use for a variable?
[For a given variable, we may use a different register
at different points in the program.]

© Harry H. Porter, 2006

18

CS-322 Target Generation, Part 1

Assume

Multiply Instruction) .
mul y,rd KMust specify an even numbered register

rSxy — [r4,r5]

Multiply Instruction
div y, r4 & Must specify an even numbered register
[rd4,r5] + y = [rd,r5]
SRDA: Shift Right Double Arithmetic
srda 32,r6

[1010110010] [xxxxxxxxxx| é [ssssssssss| [1010110010]
ré r7 r6 r7

© Harry H. Porter, 2006 1 9

CS-322 Target Generation, Part 1

IR Code:
t :(=a +b
t =t * c
t:=t/ d
Target Code:
mov a,rl
add b,rl
mul c,r0
div d, r0
mov rl,t

© Harry H. Porter, 2006 20

CS-322 Target Generation, Part 1

IR Code: IR Code:
t :=a+b t a+b
t ;= t * ¢ t =t + ¢
t:=t/ d t t/ d
Target Code: Target Code:
mov a,rl mov a,r0
add b,rl add b,r0
mul c,r0 add c,r0
div d, r0 srda 32,r0
mov rl,t div d, r0
mov rl,t
© Harry H. Porter, 2006 2 1
CS-322 Target Generation, Part 1
IR Code: IR Code:
t :=a+b t :=a+b
t =t * ¢ t :=t + ¢
t .=t/ d t =t/ d
Target Code: Target Code:
mov a,rl mov a,r0
add b, rl add b,r0
mul c,xr0 add c,r0
div d, r0 srda 32,r0
mov rl,t div d, r0
Conclusion: mov rl,t

Where you put the result of t:=a+b (either r0 or rl)

depends on how it will be used later!!!
[A “‘chicken-and-egg” problem]

© Harry H. Porter, 2006

22

CS-322 Target Generation, Part 1

Evaluation Order
The IR code establishes an order on the operations.

Simplest Approach
* Don’t mess with re-ordering.
* Target code will perform all operations
in the same order as the IR code

Trickier Approach
* Consider re-ordering operations
* May produce better code
... Get operands into registers
just before they are needed
... May use registers more efficiently

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Moving Results Back to Memory
When to move results from registers back into memory?
After an operation, the result will be in a register.

Immediately
Move data back to memory just after it is computed.
May make more registers available for use elsewhere.

Wait as long as possible before moving it back.
Only move data back to memory ‘‘at the end”
or “when absolutely necessary”
May be able to avoid re-loading it later!

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

An Example Target Machine Op-Codes:
A 2-address Architecture mov
2 operands, at most
op source,destination add
............ > sub
Address Modes: mul
Absolute Memory Address
X—y
mov X,y .
= yx—Yy
sub X,y
Register
mov r0,rl / r3-r2 —-r3
sub r2,r3
Literal Data is included in the
mov 39,rl / instruction directly
sub 47 ,r2 . .
Indirect Register Register contains an address.
mov r0,[rl] Moves data in to word
Indirect plus Index pointed to by rl

mov r0, [r1+48] Use r1+48 as an address.
Double Indirect / Go to memory and fetch a second
mov r0,[[r1+48]] address, “p”.
“p” points to the word.

© Harry H. Porter, 2006 25

CS-322 Target Generation, Part 1

Evaluating A Potential Code Sequence

Each instruction has a “cost”
Cost = Execution Time

Execution Time is difficult to predict.
Pipelining, Branches, Delay Slots, etc.

Goal: Approximate the real cost

A “Cost Model”

© Harry H. Porter, 2006 26

CS-322 Target Generation, Part 1

Evaluating A Potential Code Sequence

Each instruction has a “cost”
Cost = Execution Time

Execution Time is difficult to predict.
Pipelining, Branches, Delay Slots, etc.

Goal: Approximate the real cost

A “Cost Model”

Simplest Cost Model:
Code Length = Execution Time
Just count the instructions!

© Harry H. Porter, 2006 27

CS-322 Target Generation, Part 1

A Better Cost Model
Look at each instruction.
Compute a cost (in “units”).
Count the number of memory accesses.

Cost = 1 + Cost-of-operand-1 + Cost-of-operand-2 + Cost-of-result

example cost

Absolute Memory Address x 1
Register r0 0
Literal 39 0
Indirect Register [rl] 1
Indirect plus Index [r1+48] 1
Double Indirect [[r1+48]] 2
Example: sub 97,r5 5-97 =15
Cost=1+0+0+0=1
Example: sub 97, [r5] [r5] =97 — [15]

Cost=1+1+0+1=3

Example: sub [rl], [[x5+48]] [[r5+48]]—[rl] — [[r5+48]]
Cost=1+2+1+2=6

© Harry H. Porter, 2006 28

CS-322 Target Generation, Part 1

Code Generation Example
IRCode: x :=y + z

Translation #1: mov y,x 3 } Cost =7
add Z,X

© Harry H. Porter, 2006 29

CS-322 Target Generation, Part 1

Code Generation Example
IRCode: x :=y + z

Translation #1: ~mov y,x 3}Cost—7
z,X

add ,
Translation #2: mov y,rl 2 Lesson #1:
add z,rl1 2 ~Cost=6 Use Registers

mov rl,x 2

© Harry H. Porter, 2006 3 0

CS-322 Target Generation, Part 1

Code Generation Example
IRCode: x :=y + z
Translation #1: mov y,x 3
el et e = 7
add Z,X 4 } Cost
Translation #2: mov y,rl 2 Lesson #1: .
add z,rl 2 Cost = 6 Use Registers
mov rl,x 2
Translation #3: Lesson #2: - - -
Assume “y” is in rl and “7” is in r2 Keep variables in registers
Assume “y” will not be needed again
add r2,rl 1
mov rl,x 2 [Cost=3
© Harry H. Porter, 2006 3 1
CS-322 Target Generation, Part 1
Code Generation Example
IRCode: x :=y + z
Translation #1: mov y,x 3 _
add z,x 4 }COSt_7
Translation #2: mov y,rl 2 Lesson #1: .
add z,rl 2 ~Cost=6 Use Registers
mov rl,x 2
Translation #3: Lesson #2:)))
Assume “y” is in rl and “z” is in r2 Keep variables in registers

add
mov

Translation #4:

add

Assume “y” will not be needed again
r2,rl 1 Lesson #3:
rl,x 2 Cost=3

Assume “y” is in rl and “7” is in r2

Assume “y” will not be needed again.
Assume we can keep “x” in a register.
r2,rl

Avoid or delay storing
into memory.

1 }Cost:l

© Harry H. Porter, 2006

32

CS-322 Target Generation, Part 1

Code Generation Example
IRCode: x :=y + z

Translation #1: mov y,x 3 } Cost =7

add zZ,X
Translation #2: mov y,rl 2 Lesson #1:
add z,rl1 2 ~Cost=6 Use Registers
mov rl,x 2
Translation #3: Lesson #2: o
Assume “y” is in rl and “7” is in r2 Keep variables in registers

Assume “y” will not be needed again
add r2,r1 1 Lesson #3:
Cost =

mov rl,x 2 Avoid or delay storing
Translation #4: into memory.
Assume “y” is in rl and “7” is in r2
Assume “y” will not be needed again. Lesson #4: (not illustrated)

Assume we can keep “x” in a register.

Use different addressin
add r2,rl 1 }Cost=1 f &

modes effectively.

© Harry H. Porter, 2006 3 3

CS-322 Target Generation, Part 1

Basic Blocks

Break IR code into blocks such that...
The block contains NO transfer-of-control instructions
... except as the last instruction
A sequence of consecutive statements.

* Control enters only at the beginning.

* Control leaves only at the end.

© Harry H. Porter, 2006 3 4

CS-322 Target Generation, Part 1

Label 43:

Label 44:
Label 45:

Label 46:

Basic Blocks

.
.

t3 = t4 + 7

t5 = t3 - 8

if t5 < 9 goto Label 44

t6 :=1

goto Label 45

t6 := 0

t7 := t6 + 3
t8 =y + z
x := t8 -4

y = t8 + x
Z :=w + X

t9 :=z -5

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

335

. Basic Blocks
.
Label 43: t3 = t4 + 7
t5 := t3 - 8 B,
if t5 < 9 goto Label 44
t6 :=1 B2
goto Label 45
Label 44: té6 := 0 B3
Label 45: t7 := t6 + 3
t8 =y + z
x := t8 -4 B4
= t8 + x
Label 46: zZ :=w + x
t9 =z -5 BS

© Harry H. Porter, 2006

36

CS-322 Target Generation, Part 1

Control Flow Graph

N

Bl t3 = t4 + 7
t5 = t3 - 8
if t5 < 9 goto By

B — 3
\
By|t7 := t6 + 3
t8 =y + z
X := t8 -4
y := t8 + x
B52:=w+x
t9 =z -
.

CS-322 Target Generation, Part 1

© Harry H. Porter, 2006 3 7

Algorithm to Partition Instructions
into Basic Blocks

Concept: “Leader”
The first instruction in a basic block

Idea:
Identify ‘“leaders”
* The first instruction of each routine is a leader.
* Any statement that is the target of a branch / goto is a leader.
* Any statement that immediately follows
a branch / goto
a call instruction
... is a leader

A Basic Block consists of
A leader and all statements that follow it
... up to, but not including, the next leader

© Harry H. Porter, 2006 3 8

CS-322 Target Generation, Part 1

Identify Leaders

[]
Label 43: t3 = t4 + 7
t5 := t3 - 8
if t5 < 9 goto Label 44

t6 :=1

goto Label 45
Label 44: t6 := 0
Label 45: t7 := t6 + 3

t8 =y + z

x := t8 -4

y = t8 + x
Label 46: zZ =W+ x

t9 :=z -5

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

39

Identify Leaders

Label 43: t3 td4 + 7
t5 := t3 - 8
if t5 < 9 goto Label 44

t6 :=1
goto Label 45
Label 44: té6 := 0
Label 45: t7 := t6 + 3
t8 =y + z
x := t8 -4
= t8 + x
Label 46: zZ :=w + x
t9 =z -5

Targets of
GOTOs

© Harry H. Porter, 2006

40

CS-322 Target Generation, Part 1

Identify Leaders

[]
Label 43: t3 = t4 + 7
t5 := t3 - 8
if t5 < 9 goto Label 44

Label 45: t7 := t6 + 3
t8 =y + z
x := t8 -4
y = t8 + x

Label 46: zZ :=w + x
t9 :=z -5

t6 =1 /v
goto Label/ a GOTO
Label 44: té6 := 0

Follows

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

41

Identify Leaders

Label 43: t3 t4 + 7
t5 := t3 - 8
if t5 < 9 goto Label 44

t6 =1
goto Label 45
Label 44: té6 := 0
Label 45: t7 := t6 + 3
t8 =y + z
x := t8 -4
= t8 + x
Label 46: zZ :=w + x
t9 =z -5

© Harry H. Porter, 2006

42

CS-322 Target Generation, Part 1

Look at Each Basic Block in Isolation

Use (B)
The set of variables used (i.e., read) by the Basic Block
(... before being written / updated)
The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.
The “outputs” of the BB

B,

H<d N X
nmunnu
AN XK

f.w

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

43

Look at Each Basic Block in Isolation

Use (B)
The set of variables used (i.e., read) by the Basic Block
(... before being written / updated)
The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.
The “outputs” of the BB

B,

[}
AN XK

+ v
*y
+ 5 Def (B7) =?
v g

H <4 N X
I

f.w

Use (B7) =y, v, w

© Harry H. Porter, 2006

44

CS-322 Target Generation, Part 1

Use (B) Look at Each Basic Block in Isolation

The set of variables used (i.e., read) by the Basic Block
(... before being written / updated)
The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.
The “outputs” of the BB

B,

I
AN XK

+ v

* y Use (B;) =y, v, w
+ 5 Def (B7) =x,2, v
v g

H <4 N X
!

f.w

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

45

Look at Each Basic Block in Isolation

Use (B)
The set of variables used (i.e., read) by the Basic Block
(... before being written / updated)
The “inputs” to the BB

Def (B)
The set of variables in the Basic Block that are written / assigned to.
The “outputs” of the BB

B,

[}
AN XK

Use (B7) =y, v, w
Def (B7) =x, 2z, v

Q Ui <

+
*
+
v

P

View the basic block as a function
<x,z,v>:=f(y, v, w)

Okay to transform the block!
(as long as it computes the same function)

H <4 N X
I

fw oto Bg

© Harry H. Porter, 2006

46

CS-322 Target Generation, Part 1

Common Sub-Expression Elimination

A Basic Block:

X :=b +c
y :(=a-d .
d :=b + ¢ We compute ‘“‘b+c”’ twice!

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

47

Common Sub-Expression Elimination
Transform:

X :=b +

C
= a-d .
d :=b + ¢ We compute “b+c” twice!

<
I

Into:
b4 b + c
y :=a-d
d :=x

© Harry H. Porter, 2006

43

CS-322 Target Generation, Part 1

Common Sub-Expression Elimination

Transform:

Xx :=b + ¢

y :=a-d

d :=b +c What about “a-d”...

z:=a-d Do we need to recompute?
Into:

x :=b + c

y :=a-d

d :=x

z 2?7727

© Harry H. Porter, 2006 49

CS-322 Target Generation, Part 1

Common Sub-Expression Elimination

Transform:

X :=b + c

y :=a-d

d:=b+c What about “a-d”...

z:=a-d Do we need recompute?
Into:

b4 b+ c

y :=a-d

d:=x Yes!

z a-d “d” has been changed since ‘“‘a-d”’ computed!

Now, ‘“‘a-d”’ may compute a different value!

© Harry H. Porter, 2006 5 0

CS-322 Target Generation, Part 1

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

X :=b + ¢

: +
><::=:+3f,

o}
I
% 0 b
+ + +
< Ho0

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

x :=b + ¢ a :=
: + >< :
><xiIilyT oiE

o}
I
X 0 0
+ + +
< Ho0
I
I
0 o X
+ + +
QK

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

X :=b + c x :=b + c a :=x+y
d :=e + £ a:=x+y><x:=b+c
a x+y><d:=e+f = e + £

But some changes would change the program!

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

S3

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

X :=b + c X :=b + c a:=x+y
d :=e + £ a:=x+y><x:=b+c
a x+y><d:=e+f = e + £

But some changes would change the program!

When can we exchange these two instructions?
X =Vl...Vz...

Y iTV3...V,. ..

Any variables (including
possibly “x” and “y”)

© Harry H. Porter, 2006

54

CS-322 Target Generation, Part 1

Reordering Instructions in a Basic Block

Sometimes we can change the order of instructions...

Xx :=b + ¢ X :=b + c
d :=e + £ a:=x+y><
a=x+y><d:=e+f

But some changes would change the program!

When can we exchange these two instructions?
X =Vl...VZ...

Y TV3...Vg. ..

If and only if...

vy # Y

Vo ® Y Any variables (including
vy % x possibly “x” and “‘y”)
V4 # X

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

S35

Live Variables
“Is some variable x live at some point P in the
program?”

execution?

Could the value of “x”’ at point P ever be needed later in the

© Harry H. Porter, 2006

56

CS-322 Target Generation, Part 1

Live Variables
“Is some variable x live at some point P in the

program?”

Could the value of “x’’ at point P ever be needed later in the
execution?

“Point in a program”
A point in a program occurs between two statements.

= <
a '_b+c@P0intP
d :=e * £
-=b-5;
Cc .

© Harry H. Porter, 2006 5 7

CS-322 Target Generation, Part 1

Live Variables
“Is some variable x live at some point P in the

program?”

Could the value of “x”’ at point P ever be needed later in the
execution?

“Point in a program”
A point in a program occurs between two statements.

e <
a '_b+c%P0intP
d :=e * £
-=b—5:
CcC .

Is it possible that the program will ever read from x

along a path from P?
[... before “x” is written / stored into]

© Harry H. Porter, 2006 5 8

CS-322 Target Generation, Part 1

“Dead”’ Variables

A Variable is “Dead at point P
= Not Live

Value will definitely never be used.
No need to compute it!
If value is in register, no need to store it!

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

S9

Liveness Example

a :=b + c At this point...
ve?
B e Is b live:
c :=b -5

© Harry H. Porter, 2006

60

CS-322 Target Generation, Part 1

Liveness Example

a:=b + c At this point...
> Is b live? YES
= e * f .
Is c live?
c :=b -5

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

61

Liveness Example

a :=b + c At this point...
B e Is b live? YES
_ Is c live? NO
c:=b->5 Is a live?

© Harry H. Porter, 2006

62

CS-322 Target Generation, Part 1

Liveness Example

b+ c At this point...
Is b live? YES
Is c live? NO

Q'
I

e * f

b -5

(o]
I

Is g live?

Is a live? Don’t Know

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

63

Liveness Example

a :=b + c At this point...
B e Is b live? YES
Is ¢ live? NO

Is g live? Possibly!

Is a live? Don’t Know

© Harry H. Porter, 2006

64

CS-322 Target Generation, Part 1

Liveness Example

Must look at the whole ““control flow graph” to determine liveness.

a = .
. Is ““a” live at the
1f x <y goto .. end of this block?

© Harry H. Porter, 2006 6 5

CS-322 Target Generation, Part 1

Liveness Example

Must look at the whole “control flow graph” to determine liveness.

a ‘= .
. Is “a” live at the
1f x <y goto .. end of this block?

I 669 — (1982
b :=a + 5 Is “a a := a7 Is “a
. live here? . live here?
[] []
[] []

© Harry H. Porter, 2006 6 6

CS-322 Target Generation, Part 1

Liveness Example

Must look at the whole ““control flow graph” to determine liveness.

a = ...
. Is ““a” live at the
1f x <y goto .. end of this block?

_ —1Is “a” _ —1Is ““a”
b :=a+ 5 live here? a := 47| live here?
. YES .

© Harry H. Porter, 2006 67

CS-322 Target Generation, Part 1

Liveness Example

Must look at the whole “control flow graph” to determine liveness.

a = ...
. Is “a” live at the
1f x <y goto .. end of this block?

_ —1Is “a” _ —1s “q”
b :=a+ 5 live here? a =47 live here?
. YES . NO

© Harry H. Porter, 2006 6 8

CS-322 Target Generation, Part 1

Liveness Example

Must look at the whole ““control flow graph” to determine liveness.

a ‘= ...
. Is ““a” live at the
1f x <y goto .. end of this block?
YES
_ —1Is ““a” _ —1Is ““a”
bi=a+§ live here? a := 47| live here?
. YES . NO

© Harry H. Porter, 2006 69

CS-322 Target Generation, Part 1

Live Variable Analysis
A Rather Complex Algorithm

Input:
The Control Flow Graph

Use(B;)
Def(Bi) for all Bi

Output:
Live(B,) = a list of all variables live at the end of B;

Live Variable Analysis missing?

Assume all variables are live at the end of
each basic block.

© Harry H. Porter, 2006 70

CS-322 Target Generation, Part 1

Temporaries

Assumption:
Each temporary is used in only one basic block
(True of temps for expression evaluation)

t5 = xxxx + XXxXX
xxxx = t5 + xxxx More precisely:
No temp will ever
be in Use(B;) for any BB |
Conclusion:

Temps are never live at the end of a basic block.

If Live-Variable-Analysis is missing...
this assumption can at least identify many dead variables.

© Harry H. Porter, 2006 7 1

CS-322 Target Generation, Part 1

Dead Code

“Dead Code” (first meaning)
Any code that cannot be reached.
(Will never be executed.)

X =y + z
goto Label_ 45
3 a:=b+te " Dead Code (unreachable)
__d i=e* £ ____I
Label 45:
Z = X - a

© Harry H. Porter, 2006 72

CS-322 Target Generation, Part 1

Dead Code

“Dead Code” (first meaning)
Any code that cannot be reached.
(Will never be executed.)

X =y + z
goto Label 45
" a:=b+ec "i Dead Code (unreachable)
- d_i=e* £ ____/
Label 45:
Z =X - a

“Dead Code” (second meaning)
A statement which computes a dead variable.

Example:
b :=x*y
a :=b +

Se—1If “a” is not live here...
Then eliminate this statement!!!

© Harry H. Porter, 2006 73

CS-322 Target Generation, Part 1

Temporaries

If you can identify a variable which is
not in Use(B;) for any basic block
(e.g., a temporary used only in this basic block)

Then you may...
* Rename the variable
* Keep the variable in a register instead of in memory
* Eliminate it entirely (during some optimization)

Must be careful that the variable
is not used in other routines
(i.e., accessed as a non-local from another routine)

© Harry H. Porter, 2006 74

CS-322 Target Generation, Part 1

Algebraic Transformations
Watch for special cases.
Replace with equivalent instructions
... that execute with a lower cost.

Examples
x :=y+0 = X =y
x =y *1l = X =y
X y ** 2 = X =y *y
X :=y+1 = x := incr(y)
x =y -1 = x := decr(y)
.etc...

May do some transformations during “Peephole Optimization.”

Other transformations may be Target Architecture Dependent
(use your ““cost model” to determine when to transform)

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

75

Control Flow Graphs

Definitions: By
¢ Initial Block v
* Predecessor Blocks B,
¢ Successor Blocks
B
3 B 4
Predecessors
Bs
Successors

© Harry H. Porter, 2006

76

CS-322 Target Generation, Part 1

Representing Basic Blocks (Ideas)

N

leader

AW

=e - f

o—
7

o
2\

]—T/ :

o | e

numberOfInst 4
successorl ,/.
successo

X =y + z

v W =V + oz

;\ a :=b + c

\ \ if x<b gOtO

NULﬁ\ =v +w

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

77

Representing Basic Blocks (Ideas)

T

successor P > ® —>
instructions).

o
Lo |®
Lo

|if %<y gotoe|

-

Branch instructions now point to Basic Blocks [

VY
RARRAS

(...not to IR instructions, as before)

© Harry H. Porter, 2006

78

CS-322 Target Generation, Part 1

What is a “LOOP”?

A cycle in the flow graph.

Can go from B back to B.

A path from B to B.

All blocks on any path from B to B.

© Harry H. Porter, 2006

CS-322 Target Generation, Part 1

79

Note: This loop has multiple entries!
* Very un-natural
* Rare in assembly language programs
* Impossible in many programming languages

goto Lab45;

v.wl;:;.le (x<y) {

Lab45:

© Harry H. Porter, 2006

30

CS-322 Target Generation, Part 1

Natural Loops

Each loop has a unique entry (its “Header Block™)

) while(...) {

To reach any block in the loop (from outside the loop) ...

you must first go through the header block while(...)

Result from “‘structured programming” constructs s
while, for, do-until, if, ... }

Concepts:
“loop nesting” 1 }

“inner / outer loops”

Inner Loop
© Harry H. Porter, 2006 8 1

