Syntax Analysis - Part 3

Building LR Tables

How to construct the ACTION and GOTO tables?

e Define “items”
* Define “viable prefix”
* Define the “closure function”
Set-of-items — Set-of-items
e Define the GOTO function
 Work with a set of sets of items
A collection of sets of items
CC = Cannonical Collection of LR items
e Describe how to construct CC
e Given all this, describe how to construct the tables

© Harry H. Porter, 2005

Syntax Analysis - Part 3

LR(0) Items

Given: A grammar, G
Items look like productions
... augmented with a dot in the righthand side.

Grammar: The Items:

<+
-

o~ e -
= *
- =

E
E
T
T
F
F

Vbbb

&

e e = =

Special Case:
Rule:
A — ¢
Yields one item:
A —e

_ === EJE ===

© Harry H. Porter, 2005)

Syntax Analysis - Part 3

LR(1) Items

Just like before, except...

* Lookjahead symbol The look-ahead symba
e Terminal symbol from grammar

Grammar: Examples:

—_—
—_—
—_—
—_—
—_—
—_—

© Harry H. Porter, 2005

Syntax Analysis - Part 3

Intuition behind LR(1) Items

F—=(E),)
We were hoping / expecting to see an F next, followed by a)
and we have already seen a (.
We are on the path to finding an F, followed by a).
Using rule 5, one way to find an F is to find (E) next.
So now we are looking for E), followed by a).

F—=(E)*,)
We were looking for an F, followed by a)
and we have found (E)
If a) comes next then the parse is going great!
... Now reduce, using rule F — (E)

© Harry H. Porter, 2005

AR AN Sl A

eSSl Beslcs

Vbbb

+

Co~ M e]
*

&

=1

=

S

Syntax Analysis - Part 3

1. E—-E+ T
Intuition behind LR(1) Items % =7 =,
F —=<<(E),) 4. T —- F
It would be legal at this point in the parse 5. F¥ = (E)
to see an F, followed by a). 6. F — id

Using rule 5, one way to find an F is to find (E) next.
So, among other possibilities, we are looking for (E), followed by a).
If a (comes next, then let’s scan it and keep going,

looking for E), followed by a).
If we get E) later, then we will be able to reduce it to F

... but we may get something different (although perfectly legal).

E—-T,)
It would be legal at this point in the parse
to see an E, followed by a) .
Using rule 2, one way to find an E is to find T next.
So, among other possibilities, we are looking for a T followed by a).
And how can we find a T followed by a) ?
T —-eT*F,)
T —°F,)

© Harry H. Porter, 2005

Syntax Analysis - Part 3

Step 1

Augment the grammar by adding...
e A new start symbol, S'
e Anewrule S'— S

“Goal”

E-E+T
E— T
T—>T*F
T—> F
F— (E)
F — id

Our goal is to find an S', followed by $.
S' = ¢E, §

Whenever we are about to reduce using rule O...
Accept! Parse is finished!

© Harry H. Porter, 2005 6

Syntax Analysis - Part 3 0. S'— E
- 1. E E+T
The CLOSURE Function S B
Let’s say we have this item: 3. T-=T*F
E — .Ta) 4. T —= F
What are the ways to find a T? 5. F—- (E)
T —F 6. F — id
T—-T*F —
We are looking for a T, followed by a), so we’ll need to add these items:
T — °F,)

T— T *F,)
We can find a T followed by a) if we find an F following by a) .
How can we find that?

F—=<+(E),)

F —+id,)
We can also find a T followed by a) if we find an T * F followingby a).
To find that, we need to first find another T, but followed by *.

T — <F, *

T— T *F, *
So we should also look for a F followed by a *.

F—e<¢(E), *

F —id, *

© Harry H. Porter, 2005 7

Syntax Analysis - Part 3

The CLOSURE Function

Given:
I = a set of items

Output.
CLOSURE(() = a new set of items

Algorithm:
result = {}
add all items in I to result
repeat
for every item A—fCd,a in result do
for each rule C—y in the grammar do
for each b in FIRST (6a) do
add C —-°+*y,b to result
endFor
endFor
endFor
until we can’t add anything more to result

© Harry H. Porter, 2005 S

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Letli={ E > E*+ T,)
T = Tex*x F,)
F —ide,)
F—=(E)e-,)
¥
Compute: CLOSURE (I;)={

© Harry H. Porter, 2005

AR o

S'— E
E—-E+T
E—-T

T—T*F
T > F
F— (E)
F — id

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Letli={ E > E*+ T,)
T >Tex F,)
F —ide,)
F—=(E)-,)

AR o

S'— E
E—-E+ T
E—-T

T—T*+*F

T—F

F—- (E)

F — id

Compute: CLOSURE (I;)={
Start by adding all items in I...
E—-E*+ T,)
T =-Te*F,)
F —ide-,)
F—=(E)-,)

© Harry H. Porter, 2005

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Letli={ E > E*+ T,)
T >Tex F,)
F —ide,)
F—=(E)-,)

AR o

S'— E
E—-E+ T
E—-T

T—T*+*F

T—F

F—- (E)

F — id

Compute: CLOSURE (I;)={
Start by adding all items in I...
E—E*+ T,)
T ->Te*F,)
F —ide-,)
F—=(E)-,)
Is the dot in front of a non-terminal?

© Harry H. Porter, 2005

Syntax Analysis - Part 3

CLOSURE Function Example

Example: Letli={ E > E*+ T,)
T >Tex F,)
F —ide,)
F—=(E)-,)

AR o

S'— E
E—-E+ T
E—-T

T—T*+*F

T—F

F—- (E)

F — id

Compute: CLOSURE (I;)={
Start by adding all items in ...
E—=E*+T,)
T =>Tex*x F,)
F —ide-,)
F—=(E)-,)
Is the dot in front of a non-terminal?
. no more items are added.

© Harry H. Porter, 2005

Syntax Analysis - Part 3

0. S'— E
. 1. E-E+ T
CLOSURE Function Example s E o T
Example: Letl,={ T — °F,) 3. T-=T*F
T—T=*F,) } 4. T— F
Compute: CLOSURE (I,) =1 5. F—- (E)
Start by adding... 6. F — id

© Harry H. Porter, 2005 13

Syntax Analysis - Part 3 0. S'— E
. . E-E+T
CLOSURE Function Example | ¢ _ T
Example: Letl,={ T — °F,) 3. T-=T*F
T — T *F,) } 4. T— F
Compute: CLOSURE (1,) =1 5. F—- (E)
Start by adding all items in I... 6. F — id

(1) T = *F,)
2) T—+T*F,)

Look at (1) first...

© Harry H. Porter, 2005 14

Syntax Analysis - Part 3 0. S'— E
. . E-E+T
CLOSURE Function Example | ¢ _ T
Example: Letl,={ T — °F,) 3. T-=T*F
T — T *F,) } 4. T— F
Compute: CLOSURE (1,) =1 5. F—- (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...

© Harry H. Porter, 2005 15

Syntax Analysis - Part 3 0. S'— E
. . E-E+T
CLOSURE Function Example | ¢ _ T
Example: Letl,={ T — °F,) 3. T-=T*F
T — T *F,) } 4. T— F
Compute: CLOSURE (1,) =1 5. F—- (E)
Start by adding all items in I... 6. F — id

(I) T— °F,)

2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...

3) F—=+<(E),)

4) F — +id,)

Look at (2) next...

© Harry H. Porter, 2005 16

Syntax Analysis - Part 3 0. S'— E
. . E-E+T
CLOSURE Function Example | ¢ _ T
Example: Letl,={ T — °F,) 3. T-=T*F
T — T *F,) } 4. T— F
Compute: CLOSURE (1,) =1 5. F—- (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...
3) F—=+(E),)
4) F—-id,)
Look at (2) next. Look at each T rule. For every b in FIRST (*F)) = {*}...
(5) T — *F, *
(6) T — T * F, *

Look at (3) and (4) next...

© Harry H. Porter, 2005 17

Syntax Analysis - Part 3

0. S'— E
. 1. E E+T
CLOSURE Function Example |, © _ T
Example: Letl,={ T — °F,) 3. T—-=T*F
T—=+T*F) } 4. T — F
Compute: CLOSURE (I,) =1 5. F— (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...
3) F—=+(E),)
4) F—-id,)
Look at (2) next. Look at each T rule. For every b in FIRST (*F)) = {*}...
(5) T — *F, *
(6) T — T * F, *
Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next...

© Harry H. Porter, 2005 18

Syntax Analysis - Part 3

0. S'— E
. 1. E E+T
CLOSURE Function Example |, © _ T
Example: Letl,={ T — °F,) 3. T—-=T*F
T—=+T*F) } 4. T — F
Compute: CLOSURE (I,) =1 5. F— (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...
3) F—=+(E),)
4) F—-id,)
Look at (2) next. Look at each T rule. For every b in FIRST (*F)) = {*}...
(5) T — *F, *
(6) T — T * F, *
Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every b in FIRST (e*) = {*}...
(7) F =+ (E), *
8) F — «id, *

Look at (6) next...

© Harry H. Porter, 2005 19

Syntax Analysis - Part 3 0. S'— E
. . E-E+T
CLOSURE Function Example | ¢ _ T
Example: Letl,={ T — °F,) 3. T-=T*F
T — T *F,) } 4. T— F
Compute: CLOSURE (1,) =1 5. F—- (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...
3) F—=+(E),)
4) F—-id,)
Look at (2) next. Look at each T rule. For every b in FIRST (*F)) = {*}...
(5) T — *F, *
(6) T — T * F, *
Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every b in FIRST (e*) = {*}...
(7) F =+ (E), *
8) F — «id, *
Look at (6) next. Look at each T rule. For every b in FIRST (*F*) = {*}...
We already added (5) and (6)

Look at (7) and (8) next...

© Harry H. Porter, 2005 20

Syntax Analysis - Part 3

0. S'— E
. 1. E E +
CLOSURE Function Example |, © _ T T
Example: Letl,={ T — °F,) 3. T—-=T*F
T—=+T*F) } 4. T — F
Compute: CLOSURE (I,) =1 5. F— (E)
Start by adding all items in I... 6. F — id

(1) T—*F,)
(2) T —= T *F,)
Look at (1) first. Look at each F rule. For every b in FIRST (¢)) ={) }...
3) F—=+(E),)
4) F—-id,)
Look at (2) next. Look at each T rule. For every b in FIRST (*F)) = {*}...
(5) T — *F, *
(6) T — T * F, *
Look at (3) and (4) next. The dot is not in front of a non-terminal.
Look at (5) next. Look at each F rule. For every b in FIRST (e*) = {*}...
(7) F =+ (E), *
8) F — «id, *
Look at (6) next. Look at each T rule. For every b in FIRST (*F*) = {*}...
We already added (5) and (6)
Look at (7) and (8) next. The dot is not in front of a non-terminal.

h

© Harry H. Porter, 2005 21

Syntax Analysis - Part 3

0. S'—= E
. 1. E E+T
CLOSURE Function Example y | : -
Example: Letl;={E — *E + T,) } 3. T—-T*F
Compute: CLOSURE (13) =1 4. T—F
E — «E+T,) 5. F— (E)
Look at E rules. For every b in FIRST (+T))= {+}... 6. F — id

E— E+T, +
E — T, +
Look at E rules. For every b in FIRST (+T+)... (Nothing new added)
Look at T rules. For every b in FIRST (e+) = {+}
T — «T*F, +
T — oF, +
Look at T rules. For every b in FIRST (*F+) = {*}
T —»>eT*F, *
T — «F, *
Look at F rules. For every b in FIRST (¢+) = {+}
F—¢<(E), +
F — ¢id, +
Look at F rules. For every b in FIRST (e*) = {*}
F—¢(E), *
F — eid, *

¥
© Harry H. Porter, 2005 22

Syntax Analysis - Part 3

The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...

1l
function GOTO(I,X) returns a set of items /|y other words, move
result = {} the dot past the X

look at all items in I...
if A= 0°X0,a is in I
then add A—aX°*0,a to result

result = CLOSURE (result) _—
...and take the CLOSURE
of whatever items you get

in any items where it
is in front of an X

© Harry H. Porter, 2005 23

Syntax Analysis - Part 3

The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...

1l
function GOTO(I,X) returns a set of items /|y other words, move
result = {} the dot past the X

look at all items in I...
if A= 0°X0,a is in I
then add A—aX°*0,a to result
result = CLOSURE (result) _—
...and take the CLOSURE
Intuition: \Qf whatever items you get
e [is a set of items indicating where we are so far,
after seeing some prefix y of the input.
e [describes what we might legally see next.
e Assume we get an X next.
* Now we have seen some prefix yX of the input.

* GOTO(, X) tells what we could legally see after that.
* GOTO(, X) is the set of all items that are “valid” for prefix yX.

© Harry H. Porter, 2005 24

in any items where it
is in front of an X

Syntax Analysis - Part 3

0. S'—= E
GOTO Function Example ; g: E .
Example: letly= { E —= Te,) 3: T—-T * F
T - Te+*F,) } 4. T— F
Compute: GOTO (I, *)= 5. F— (E)
Is the ¢ in front of * in any of the items? 6. F — id

T - T*+F,)
Now take the closure...
F—=>9°+(E),)
F — ¢id,)

h

Intuition:
We found a T and then we found a *. What are we looking for next?
T - T*+F,)
Means: We are now looking for an F followed by)
F—=+<+(E),)
Means: We could find that by finding (E) followed by)
F —-id,)
Means: We could find that by finding (E) followed by)

© Harry H. Porter, 2005 25

Syntax Analysis - Part 3

0. S'—= E
GOTO Function Example ; g: E .
Example: Letlg= { E — T,) 3: T—-T * F
T —><T*F,) } 4. T—F
Compute: GOTO (I5, T)= | 5. F— (E)
Is the ¢ in front of T in any of the items? 6. F — id

E—=Te-,)
T - Te*F,)
Now take the closure...
Is the ¢ in from of any non-terminal? Nothing more added...

¥
Intuition:
We were looking for a T. Then we found it. What are we looking for next?
E—-Te-,)

Means: We are now looking for)
T - Te*F,)
Means: We are now looking for * F followed by)

© Harry H. Porter, 2005 26

Syntax Analysis - Part 3

Constructing the Canonical Collection

Each CC; will be a set of items.
We will build up a collection of these.

CC =*“The Canonical Collection of LR(1) items”
= a set of sets of items

= { CC,, CC,, CC,, CC;,... CCyx}

© Harry H. Porter, 2005 27

Syntax Analysis - Part 3

Constructing the Canonical Collection

Each CC; will be a set of items.
We will build up a collection of these.
CC =*“The Canonical Collection of LR(1) items”
= a set of sets of items

= { CC,, CC,, CC,, CC;,... CCyx}

Algorithm to construct C C, the Canonical Collection of LR(1) Items:

let CCy= CLOSURE ({S' — S, $})
add CC, to CC

repeat
let CC, be some set of items already inCC

for each X (that follows a ¢ in some item inCC))...
compute CC, = GOTO (CC,, X)
if CC_ is not already in CC then
add it
set MOVE(CC,,X) = CC,
endIf
endFor
until nothing more can be added to CC

© Harry H. Porter, 2005 28

Syntax Analysis - Part 3 0. S'—> E
. E=-E+ T
Example: 5 E o T
CC, =CLOSURE({S' — *E, $}) 3. T— T * F
=18 —=¢E, $ 4. T—F
E—<E+T, 3 5. F— (E)
E —E+T, + 6. F — id
E — T, $ —
E — T, +
T —T*F, $
T = T*F, +
T - eT*F, *
T —°F, $
T —°F, +
T - F, *
F—-¢+(E), §
F—=e<(E), +
F—e°¢(E), *
F — +id, $
F — «id, +
F —id, * }

© Harry H. Porter, 2005 29

Syntax Analysis - Part 3

0. S'— E
Example: ; g: ¥ w1
CC, = CLOSURE({S' — *E, $}) 3 T T *F
={8" = E, § 4. T— F
E—<E+T, 3 5. F— (E)
E—<E+T, + 6. F — id
E— T, $ —
E — T, +
T - +T*F, $
T - +T*F, + o
T - eT*F, * D
T — oF, $ The ¢ 1s before E, T, F, id, and (...
T —°F, + Next, we’ll compute...
T —°F, * GOTO (CCy, E) = CC,
F—=+<(E), S GOTO (CC,, T) = CGC,
F—=+(E), + GOTO (CCy, F) = CC,4
F—=<+(E), * GOTO (CCy, id) = CCq
F —id, $ GOTO (CCy, () = CC,
F%'E., + J
F—-id, * } =

© Harry H. Porter, 2005 30

Syntax Analysis - Part 3

GOTO (CC,, E) =CC,
Advance ° past E in the items containing * E a
CC,={
S' =Ee, $
E—> Ee+T, $
E—> Ee+T, +
And take the closure... (Nothing more added.)
}

Intuition:
We will reduce by S' — E if the next symbol is $.
Otherwise, we we will look for a + next.

The ¢ 1s in front of +. We’ll come back to CC, later.

© Harry H. Porter, 2005

AR o

S'— E
E—-E+T
E—-T

T—T=*F

T > F
F— (E)
F — id

31

Syntax Analysis - Part 3 0. S'— E
GOTO (CC,, T) = CC, c oottt
Advance ® past T 3. T->T*F
CC,={ 4. T—- F
E—>Te, $ 5. F—= (E)
E—Te°, + 6. F — id

T — Te*xF, $

T — Te*F, +

T - TexF, *
And take the closure...

h

Intuition:
We will reduce by T — F if the next symbol is $ or +.
Otherwise, we will look for *.

The ¢ 1s in front of *. We’ll come back to CC, later.

© Harry H. Porter, 2005 32

Syntax Analysis - Part 3

0. S'—= E
GOTO (CC,, F) = CC, -
Advance ° past F 3. T—>T*F
CC =1 4. T— F
T —=Fe, 3 5. F— (E)
T = Fe, + 6. F— id
T — Fe, * —
And take the closure...
}
Intuition:

We will reduce by T — F if the next symbol is $, +, or *.

The ¢ is not in front of any symbol; no further “GOTO”s.

© Harry H. Porter, 2005 33

Syntax Analysis - Part 3

0. S'— E

GOTO (CC,, id) = CCs y oot

Advance ¢ past id 3. T—>T*F
CCq= { 4. T—>F

= ey & 5. F— (E)
=28 o, 6. F — id

F — E ., %*
And take the closure...

h

Intuition:
We will reduce after seeing an id, if the next symbol is +, *, or $.

The ¢ is not in front of any symbol; no further “GOTO”s.

© Harry H. Porter, 2005 34

Syntax Analysis - Part 3

0. S'—= E
Advance ° past (GOTO (CC,, O =CC, ; g: ¥ w1
CC4={F_>(°E), $ N - 3:T—>T*F
F—=(-E), + 4. T— F
F — (E), * 5. F— (E)
And take the closure... 6. F — id
E—+E+T,) ' —
E— sE+T, +
E—= T,)
E— T, + c &
T —=T*F,) The ¢ is before E, T, F, (, and id...
T - «T*F, +
T - eT*F, * Next, we’ll compute...
T — «F,) GOTO (CC,, E) = CCq
T — «F, + GOTO (CC,, T) = CC,
T — .F, * GOTO (CC4, F) =>CC10
F—=9<(E),) GOTO (CC,, () = CCyq
F—-«(E), + GOTO (CCy, id) = CCy,
F—-°(E), *)
F — «id,) ~
F — eid, +
F — e¢id, * }

© Harry H. Porter, 2005 35

Syntax Analysis - Part 3

© Harry H. Porter, 2005 36

Syntax Analysis - Part 3 0. S'—> E
. E=-E+T

GOTO (CC,, +) = CC, vy
CCi={ S§'—=E-, S 3. T>T=*F

E— E<+T, 3 4. T— F
E—->E*+T, + } 5. F— (E)

Advance ® past + in the items containing ® + 6. F — id

CC¢={ E—=E+-T, §
E—-=E+-T, +
And take the closure...
*T*F, $
eT*F, +
eT*F, *
*F, $
F, +
oF, *
*(E), S
*(E), +
*(E), *
°id, $
°id, +
°id, * ¥

Sl R N S e
A A A A

© Harry H. Porter, 2005 37

Syntax Analysis - Part 3

S'— E
E-E+T
E—T
T—T*F
T > F
F— (E)
F — id

GOTO (CC,, *) = CC,

CC,={
—>Te, $
— Te, +
— Te*F, $
— Te*F, +
— Te*F,
Advance © past *

CC,={

AR o

- - -

%

T > T*eF,

T > T*eF,

T > T*eF,
And take the closure...

* + 0

===

* + -~
* + 0

(
(
(
1

Q.

H
0.

S
EEEEE,
|:|.....
iakall

¥

Intuition.:
We have found T *.
Next, look for a F followed by $, +, or *.

© Harry H. Porter, 2005 38

Syntax Analysis - Part 3

© Harry H. Porter, 2005 39

Syntax Analysis - Part 3

© Harry H. Porter, 2005 40

Syntax Analysis - Part 3

GOTO (CC,, E) = CCy

CCq ={
F—(E*), $
F —-(E*), +
F— (E*), *
E—-E*+T,)
E—->E*+T, +
And take the closure...
¥

© Harry H. Porter, 2005

AR o

S'— E
E—-E+T
E—-T

T—T*F
T > F
F— (E)
F — id

41

Syntax Analysis - Part 3 0. S—> E
1. E E+T
GOTO (CC,, T) = CC, e
CCy =A{ 3. T>T *F
E—Te-,) 4. T—F
E—=Te-, + 5. F— (E)
T—>Te**F,) 6. F — id
T - Te*F, + —
T-)T.*F, *
And take the closure...
}

© Harry H. Porter, 2005 42

Syntax Analysis - Part 3 0. S—> E
1. E—=E+ T
GOTO (CC,, F) = CC,, e
CCyy =1 3. T—=T*F
T = Fe,) 4. T— F
T — Fe, + 5. F— (E)
T — Fo, %* 6. F — E
And take the closure...
}

© Harry H. Porter, 2005 43

Syntax Analysis - Part 3 0. S—> E
) 1. E—=E+ T

GOTO (CC4, 1d)=CC12 5 B> T
CCyy =1 3. T—=T+*F

F — ide,) 4. T— F
F —ide, + 5. F— (E)

F —id-, * 6. F — id

And take the closure... —

}

© Harry H. Porter, 2005 44

Syntax Analysis - Part 3 0 S o E
_ . E-=E+T
GOTO (CC,, O =CC s B T
CCII:{F—>(°E) : 3. T-T*F
Fe(.E), + 4. TaF
F—)(.E)’* S.F—>(E)
And take the closure... 6. ¥ — id
E—<*E+T,) o
E —> sE+T, + CC,, is similar to, but not
E — T,) quite the same as CC,
E—= T, + Q)
T —-eT*F, (0 _
T — «T*F, -)I- The ¢ is before E, T, F, id, and (...
T —T*F, * Next, we’ll compute...
Lol GOTO (CCyy, E) = CCyq
- GOTO (CCy, T) = CC,
F — o (,E).) GOTO (CCyy, F) = C(Cy,
F—->+(E). + GOTO (CC,y, id) = CC,
F —-id,) _ :
F — «id, +
F —+id, * }

© Harry H. Porter, 2005 45

Syntax Analysis - Part 3

GOTO (CC,,E)=CCg

CCis =1
F—(E*),)
F —-(E*), +
F— (E*), *
E—-E*+T,)
E—->E*+T, +

And take the closure...
¥

© Harry H. Porter, 2005

AR o

S'— E
E-E+T
E—T
T—T*F
T > F
F— (E)
F — id

46

Syntax Analysis - Part 3 0. S—> E
1. E—=E+ T
GOTO (CC,;,T) = CC, e
CCy =A{ 3. T>T *F
E—->Te-,) 4. T— F
E—=Te-, + 5. F— (E)
T —=Te*F,) 6. F — id
T - Te*F, + —
T-)T.*F, *
And take the closure...
}

We have seen CCgy before!

© Harry H. Porter, 2005 47

Syntax Analysis - Part 3 0. S—> E
1. E—=E+ T
GOTO (CC,;.F) = CCy, e
CCyy =1 3. T—=T*F
T - Fe,) 4. T— F
T — Fe, + 5. F— (E)
T — Fo, %* 6. F — E
And take the closure...
}

We have seen CC, before!

© Harry H. Porter, 2005 48

Syntax Analysis - Part 3

S'— E
E—-E+ T
E—-T

T—>T*F
T—F
F— (E)
F — id

AR o

© Harry H. Porter, 2005 49

Syntax Analysis - Part 3

Viable Prefixes

Consider a right-sentential form
S =pm* XXAEff =gy XXBCDEf£f =gy -

Rule: Handle
A — BCDE

A viable prefix is a prefix of a right sentential form

that does not extend to the right end of the handle.

XXBCDEff£
H_l

A Viable prefix

© Harry H. Porter, 2005

50

Syntax Analysis - Part 3

Viable Prefixes

Consider a right-sentential form
S =pm* XXAEff =gy XXBCDEf£f =gy -

Rule: Handle
A — BCDE

A viable prefix is a prefix of a right sentential form
that does not extend to the right end of the handle.

XXBCDEff£
H_J

A Viable prefix
Given a viable prefix, we can always add terminals to get a right-sentential form!

Why?
Assume that XXBC is a viable prefix that we’ve shifted onto the stack.

Assume that we have some more terminals dddeeef £ £ in the input.
If this string is legal, there must be rules that allow
D =* ddd and E =* eee
S...=pmt XXBCDEfff =\ XXBCDeeefff =py\ XXBCdddeeefff

As long as we have a viable prefix, just keep shifting!

© Harry H. Porter, 2005 51

Syntax Analysis - Part 3

The Main Idea of LR Parsing

As long as what is on the stack is a viable prefix...
* The unseen terminals might be what is required to make
STACK I REMAINING-INPUT
into a right-sentential form.
* We are on course to finding a rightmost derivation.

The key ideas of LR parsing:
Construct a DFA to recognize viable prefixes!

Every path in the DFA
(from start to any final or non-final state)
describes a viable prefix.

Each state is a set of items.
If the DFA has an edge from the current state labeled with a terminal
And the edge label = the lookahead symbol
Do a shift: Add this terminal to the viable prefix.
When the dot is at the end of one of the items in a state...

If the next symbol = the lookahead symbol...
Do areduction. A — XYZ

© Harry H. Porter, 2005

52

Syntax Analysis - Part 3

If $ or +, reduce by
E—-T

If $, +, or *, reduce by

If $, *, or +, reduce by
F— (E)

@ If +,*, or), reduce@

T—F

f +,*, or), reduce by
/ D [
If +,*, or)
/ F— id
/ T
(9) @'
ff + or), reduce bi/ T

E—T 11)

If +, *, or), reduce by
T —T*F

@ If + or), reduce by
© Harry H. Porter, 2005 E — E+T 53

Syntax Analysis - Part 3 0. S'—> E
e 1. E-E+ T
P 2. E— T
Consider this viable prefix. Trace throught the DFA. 3. T—T * F
(T * ((E) Endsupin state 21, a final state. 4. T— F
If next token is +, *, or) then reduce by F— (E) 5. F— (E)
6. F — id
N N\ The stack shows our path
21 through the DFA.
) “How we got to state 21”
18
E
11
(
11
(
17
*
9
T
4
(
0

© Harry H. Porter, 2005 54

Syntax Analysis - Part 3 0. S'—> E
1. E-E+ T
Example 5 B - T
Consider this viable prefix. Trace throught the DFA. 3. T—>T*F
(T * ((E) Endsupin state 21, a final state. 4. T— F
If next token is +, *, or) then reduce by F— (E) 5. F— (E)
6. F — id
N N\
= Back up along our path...
2]1 to where we were
18 \ before we saw (E).
]Fl N {A TS N Then take the F edge
— = — to get to state 10.
(/ F
11 11 \ /
C C
17 17
* *
9 9
T T
4 4
((
0 0

© Harry H. Porter, 2005 55

Syntax Analysis - Part 3 0. S'—> E
1. E E+T
Example s E _ T
Consider this viable prefix. Trace throught the DFA. 3. T—T * F
(T * ((E) Endsupin state 21, a final state. 4. T— F
If next token is +, *, or) then reduce by F— (E) 5. F— (E)
(T * (F Ends up in state 10, a final state. 6. F — id
If next token is +, *, or) then reduce by T—F —
N N\
57—~ Back up along our path...
) to where we were
18 \ before we saw (E).
]Fl N A TS N Then take the F edge
xampP { N — to get to state 10.
11 11 \ /
C C
17 17
* *
9 9
T T
4 4
((
0 0

© Harry H. Porter, 2005 56

Syntax Analysis - Part 3 0. S'—> E
1. E-E+ T
Example 5 E > T
Consider this viable prefix.' Trace throught the DFA. 3. T—T * F
(T * ((E) Endsupin state 21, a final state. 4. T — F
If next tqken 1S +, *, or.) then reduce by F— (E) 5. F— (E)
(T * (F Ends up in state 10, a final state. 6. F — id
If next token is +, *, or) then reduce by T—F —
N N\
21 1 Back up along our path...
_1)_8 to where we were
E >'\ AN AN AN AN before we saw F.
11 { 10 9 Then take the T edge
1(1 = 1F1 1T1 to get to state 9.
C C C
17 17 17
* * *
9 9 9
T T T
4 4 4
(((
0 0 0

© Harry H. Porter, 2005 57

Syntax Analysis - Part 3 0. S' > E
1. E-E+ T
Example 5 E > T
Consider this viable prefix. Trace throught the DFA. 3. T— T * F
(T * ((E) Endsupin state 21, a final state. 4. T — F
If next tqken 1S +, *, or.) then reduce by F— (E) 5. F— (E)
(T * (F Ends up in sta.lte 10, a final state. 6. F — id
If next token is +, *, or) then reduce by T—F
(T * (T Ends up in state 9, a final state.
If next token is +, or) then reduce by E—=T
A A Assume next token is *... Need to shift
21 | Back up along our path...
_1)_8 to where we were
E >'\ N\ N\ AN AN before we saw F.
11 { 10 9 Then take the T edge
1(1 = 1F1 1T1 to get to state 9.
(((
17 17 17
* * *
9 9 9
T T T
4 4 4
(((
0 0 0

© Harry H. Porter, 2005 58

Syntax Analysis - Part 3

0. S'—= E
1. E—-=E+ T
Example s B T
Consider this viable prefix. Trace throught the DFA. 3. T>T *F
(T * ((E) Endsupin state 21, a final state. 4. T — F
If next token is +, *, or) then reduce by F— (E) 5. F— (E)
(T * (F Ends up in state 10, a final state. 6. F — id
If next token is +, *, or) then reduce by T—F —
(T * (T Ends up in state 9, a final state.
If next token is +, or) then reduce by E—=T
A A Assume next token is *... Need to shift and goto state 17
21 1)
) N N\
18 17
E >\ N\ A\ A\ AN K3
1_(1 { 1_F0 % % There is an edge from
11 - 11 11 11 state 9 labeled *.
((((Take the * edge
1*7 1*7 1*7 1*7 to get to state 17.
9 9 9 9
g g g g Now we’ve got
((((this viable prefix:
0 0 0 0 (T * (T *

© Harry H. Porter, 2005 59

Syntax Analysis - Part 3

0. S'—= E

. E=-E+T
| - Other Examples s E— T

Here are some viable prefixes. 3 T—T * F

Trace through the DFA for each of these!

4. T— F

(E+T*F 5. ¥F—= (E)

Goes to state 20, a final state. 6. F — id

If next token is $, +, or * then reduce by T—=T*F
E+ (((T * id

Goes to state 12, a final state.

If next token is +, *, or) then reduce by F—id
(E+ (E+ (E+ (E+ (T* (T* (T* (T *

Goes to state 17, not a final state.

We must get F, (, or id next
(E+ (T

Goes to state 9

If next token is (or + then reduce by E—=T

Else okay to see *

© Harry H. Porter, 2005 60

Syntax Analysis - Part 3

Algorithm to Construct ACTION and GOTO Tables

Input: Grammar G, augmented with S'—S
Output: ACTION and GOTO Tables

Construct “Canonical Collection of LR(1) items” along with MOVE function.
CC ={CC,, CCy, CC,, CCy, ... CCx}
There will be N states, one per set of items {0, 1, 2, 3,... N }
for each CC; do
for each item in CC; do
if the item has the form A — [3 °cY,a
and MOVE (CC;,c) = CCj then
set ACTION[i,c] to “Shift j”
elseIf the item has the form A —>f3°¢,a then
set ACTION[i,a] to “Reduce A— B”

elseIf the item has the form S'— S ,$ then
set ACTION[i,S] to “Accept”
endFor
for each nonterminal A do
if MOVE (CC;,A) = CI% then
set GOTO[i,A] to j
endIf
endFor
endFor

© Harry H. Porter, 2005 61

Syntax Analysis - Part 3

The SLLR Table Construction Algorithm

With SLR, we do not have the lookahead symbol.

LR(1) items: LR(0) items:
F—=(°E),) F — (°E)
F — (°E), +
F — (E), *

Some information is lost.
Some states in CC collapse into one state.
There are fewer states in CC

= Fewer rows in the resulting tables.

© Harry H. Porter, 2005 62

Syntax Analysis - Part 3

E
E
E
E
T
T
T
T
T
T
F
F
F
F
F
F

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

© Harry H. Porter, 2005

With SLR,
these combine
into one state

N ¥

(<E)

eShes e Lol

/

P o o o o]]] g e e]] S S e e

R R R R R R R R R R AR

® & 6 &6 & & o o0 ©6 0 O © O O O O TTT

* % #° v 4 4 EE

=1 e e e e e B

'P'AAA
mmm\a o 9

alal

Q.

o 9

o & 9

* o+~ g

* +vvvv

o \9

o 9 9

+v

* + ~—

* 4 ~—

- e’
o o

%

-

63

Syntax Analysis - Part 3

The SLLR Table Construction Algorithm
The CLOSURE function is basically the same, but simpler.

The GOTO function is basically the same, but simpler.
The Construction of the Canonical Collection is the same.

The Construction of the ACTION and GOTO tables is a little different.

elseIf the item has the form A —f3¢,a then
set ACTION[i,a] to “Reduce A — f}”

V

elseIf the item has the form A — 3 ¢ then
for all b in FOLLOW(A) do
set ACTION[i,b] to “Reduce A — [}~
endFor

Sometimes SLR may try to put two actions in one table entry

...while the LR(1) tables would have more states, more rows, and no conflicts.

© Harry H. Porter, 2005

64

Syntax Analysis - Part 3

SLLR: The CLOSURE Function

Given:
I = a set of LR(0) items

Output.
CLOSURE(() = a new set of items

Algorithm:
result = {}
add all items in I to result
repeat
for every item A—f*C0d in result do
for each rule C—y in the grammar do
add C —-°+y to result
endFor
endFor
until we can’t add anything more to result

© Harry H. Porter, 2005 65

Syntax Analysis - Part 3

SLLR: The GOTO Function

Let I be a set of items...
Let X be a grammar symbol (terminal or non-terminal)...

1l
function GOTO(I,X) returns a set of items /|y other words, move
result = {} the dot past the X

look at all items in I...
if A= a°*X0d is in I
then add A > a X*d to result

result = CLOSURE (result) _—
...and take the CLOSURE
of whatever items you get

in any items where it
is in front of an X

© Harry H. Porter, 2005 66

Syntax Analysis - Part 3

SL.R: Constructing the Canonical Collection

Each CC; will be a set of items.
We will build up a collection of these.
CC =*“The Canonical Collection of LR(0) items”
= a set of sets of items

= { CC,, CC,, CC,, CC;,... CCyx}

Algorithm to construct C C, the Canonical Collection of LR(1) Items:

let CCy= CLOSURE ({S' — S, $})
add CC, to CC

repeat
let CC, be some set of items already inCC

for each X (that follows a ¢ in some item inCC))...
compute CC, = GOTO (CC,, X)
if CC_ is not already in CC then
add it
set MOVE(CC,,X) = CC,
endIf
endFor
until nothing more can be added to CC

© Harry H. Porter, 2005 67

Syntax Analysis - Part 3

SL.R: Algorithm to Construct ACTION and GOTQO Tables

Input: Grammar G, augmented with S'—S
Output: ACTION and GOTO Tables

Construct “Canonical Collection of LR(0) items” along with MOVE function.
CC ={CC,, CCy, CC,, CCy, ... CCx}
for each CC; do
for each item in CC; do
if the item has the form A —=fecy
and MOVE (CC;,c) = CI% then
set ACTION[i,c] to “Shift j”
elseIf the item has the form A —[3° then
for all b in FOLLOW(A) do
set ACTION[i,b] to “Reduce A — f}”
endFor
elseIf the item has the form S'— S e then
set ACTION[i,S] to “Accept”
endFor
for each nonterminal A do
if MOVE (CC;,A) = CCJ. then
set GOTO[i,A] to j
endIf
endFor
endFor

© Harry H. Porter, 2005 68

Syntax Analysis - Part 3

YAPP

Yet Another PCAT Parser

An SLR Parser Generator
INPUT:
e A Grammar
* A String to Parse
ACTION:
* Build the parsing tables using the SLR algorithm
e Parse the string

YAPP is written in PCAT!
cs.pdx.edu/~harry/compilers/yapp
~ 2100 lines of PCAT code.

Can be compiled by your compiler!!!

Example Input:

e A Grammar for PCAT (109 rules)
e String = the YAPP program itself

© Harry H. Porter, 2005

69

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

© Harry H. Porter, 2005 70

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr

e

-+

© Harry H. Porter, 2005 71

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr
= 123

© Harry H. Porter, 2005 72

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr
= 123

© Harry H. Porter, 2005 73

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr
= 123

Put the attributes
on the stack,
along with
grammar symbols

© Harry H. Porter, 2005 74

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr
= 123

To reduce by Expr — Expr + Term
e Perform the attibute computation
e Pop the stack
e Push the new non-terminal
with its attribute.

© Harry H. Porter, 2005 75

Syntax Analysis - Part 3

Attributes in a Shift-Reduce Parser

An attribute can be associated with each grammar symbol.

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

Synthesized Attributes:
The attributes are computed bottom-up in the parse tree.

Expr
= 123

To reduce by Expr — Expr + Term
e Perform the attibute computation
e Pop the stack
e Push the new non-terminal
with its attribute.

© Harry H. Porter, 2005 76

Syntax Analysis - Part 3

YACC

Yet Another Compiler Compiler
Unix tool to create an LALR parser.
Works with “Lex” tool: Calls yylex () to get next token.

grammar.y lex.1

y y

YACC Tool Lex Tool

v v

y.tab.c lex.yy.c

.

“C” compiler

N
a.out

© Harry H. Porter, 2005 77

Syntax Analysis - Part 3
An Example YACC Grammar

51

#include <stdio.h> This material copied as is to yy.tab.c:l
Ve e Gl An attribute is associated with each symbol
3} This tell what type the attribute has.
$token NUMBER —_— —
%% The token types (from leerl
S : SE ‘/n’ { printf (“%g\n”, $2)\;TL
| S ‘1 n' Epsilon
| | End of rula The grammar rules:
; — ~ S - SE/n
E :E ‘+' T { $$ = $1 + $3; } — S /n
| T { $8 = $1; } \ — g
; - E+ T
T : T ‘%' F { $$ = $1 * $3; } —- T
| F { $§ = 81; } — T * F
; — F
F : NUMBER { $$ = $1; } F — NUMBER
| Y E V) { $% = 8$2;)) \ - (E)

3%

#include lex.yy.c
%% \Ehis material copied as is to yy.tabzl

© Harry H. Porter, 2005 78

Syntax Analysis - Part 3

An Example YACC Grammar

% [
#include <stdio.h> Actions are executed
#define YYSTYPE doub._ When reductions are done! ﬁhe attribute of ea(h

%}
$token NUMBER
%%
. \ 14 r = W\ Q 44 .
S : SE ‘/n { printf (“%g\n”, $2); }
S ‘/n’

N\

$1 + $3; }
$1; }

$1 * $3; }
$1; }

: NUMBER $1; }
\(r E \)r $2; }

%%
#include lex.yy.c
%%

© Harry H. Porter, 2005

symbol is referred to
y position:

— K

|

The attributes)
(such as $$ and $1)
are replaced by the
appropriate code .

79

Syntax Analysis - Part 3

How the $ Notation in YACC Works

Expry — Expry + Term Expr,.t = Expr,.t + Term.t;

/I\ /l\/l\/[\ $$ = $1 + $3;

$$=$1 $1 $2 83

Expr
t = 123

A

Expr Term
t = 100 t = 23

—>

© Harry H. Porter, 2005 80

