
1

Semantics - Part 1

© Harry H. Porter, 2005

The Lexer and Parser...

• Found lexical and syntax errors

• Built Abstract Syntax Tree

Now...

•!Find semantic errors.

•!Build information about the program.

Later...

•!Generate IR Code

•!Optimize IR Code

•!Generate Target Code

Semantic Processing

2

Semantics - Part 1

© Harry H. Porter, 2005

Semantic Errors

Undefined ID / ID is already defined
Other name-related checks (e.g., can’t redefine “true”)
Field labels
Labels on loops, gotos, etc.

3

Semantics - Part 1

© Harry H. Porter, 2005

Semantic Errors

Undefined ID / ID is already defined
Other name-related checks (e.g., can’t redefine “true”)
Field labels
Labels on loops, gotos, etc.

Type checks
For operators and expressions
For assignment statements
Wherever expressions are used (e.g., “if” condition must be boolean)

4

Semantics - Part 1

© Harry H. Porter, 2005

Semantic Errors

Undefined ID / ID is already defined
Other name-related checks (e.g., can’t redefine “true”)
Field labels
Labels on loops, gotos, etc.

Type checks
For operators and expressions
For assignment statements
Wherever expressions are used (e.g., “if” condition must be boolean)

Flow of control
Return statement (“expr” must / must not be included)
Break/continue statement must be within a loop or switch
Unreachable code? Might want to detect it.

5

Semantics - Part 1

© Harry H. Porter, 2005

Semantic Errors

Undefined ID / ID is already defined
Other name-related checks (e.g., can’t redefine “true”)
Field labels
Labels on loops, gotos, etc.

Type checks
For operators and expressions
For assignment statements
Wherever expressions are used (e.g., “if” condition must be boolean)

Flow of control
Return statement (“expr” must / must not be included)
Break/continue statement must be within a loop or switch
Unreachable code? Might want to detect it.

Procedure calls
Wrong number of arguments
Type of arguments
Void / non-void conflict

6

Semantics - Part 1

© Harry H. Porter, 2005

Semantic Errors

Undefined ID / ID is already defined
Other name-related checks (e.g., can’t redefine “true”)
Field labels
Labels on loops, gotos, etc.

Type checks
For operators and expressions
For assignment statements
Wherever expressions are used (e.g., “if” condition must be boolean)

Flow of control
Return statement (“expr” must / must not be included)
Break/continue statement must be within a loop or switch
Unreachable code? Might want to detect it.

Procedure calls
Wrong number of arguments
Type of arguments
Void / non-void conflict

OOP-related checks
Does this class understand this message?
Is this field in this class?
Is private / public access followed?

7

Semantics - Part 1

© Harry H. Porter, 2005

“Blocks”
Contain variables

May be nested

May contain variable declarations
{ var x,y: int;
 ...
 { var x: double;
 ...
 }
 ...
}

Declarations of Variables

Apply to the statements in the block

...and statements in nested blocks

...unless “hidden” by other declarations

PCAT

Each “body” is a block

Outermost (main) block (at level 0)

Each procedure constitutes a new block

Blocks in C++ and Java:
 void foo {
 double x;
 ...
 for (int x = 0; ...) {
 ...
 }
 ...
 }

8

Semantics - Part 1

© Harry H. Porter, 2005

 Scope

Scope of x1

Scope of x2 and z
Scope of y

(Also: “Lexical scope of variables”)

Where is the variable visible? The scope of the variable.

Scope rules are given in the language definition.

begin
 var x1, y
 ...

 begin
 var x2,z
 ...
 end

 ...
end

9

Semantics - Part 1

© Harry H. Porter, 2005

Variations

“Variable X’s scope extends from the beginning of the block in which it was

declared, through the end of the block.”

“Variable X’s scope extends from the point of its declaration through the end

of the block.”

“... Unless hidden by a new declaration of a variable with the same name!”

10

Semantics - Part 1

© Harry H. Porter, 2005

Variations

“Variable X’s scope extends from the beginning of the block in which it was

declared, through the end of the block.”

“Variable X’s scope extends from the point of its declaration through the end

of the block.”

“... Unless hidden by a new declaration of a variable with the same name!”

PCAT

Variables

Visible (i.e., usable) only after their declaration.

Types, Procedures

Visible from the beginning of the block (to allow recursion).

PASS 1: Enter ID’s into symbol table

PASS 2: Check all uses

11

Semantics - Part 1

© Harry H. Porter, 2005

var x,y,z
type T1,T2
procedure foo1 (x,a) is

 var y,b
 type T2
 procedure foo2 () is

 var c
 begin
 ... ID ...
 end;

 begin
 ... ID ...
 end;

procedure foo3 () is

 var
 begin
 ... ID ...
 end;
begin
 ... ID ... x ... foo1 ... a ... y ... foo2
end;

Level = 0

Level = 1

Level = 2

Level = 1

“Static” Level

“Lexical” Level

(Textual)

12

Semantics - Part 1

© Harry H. Porter, 2005

Functions as Data
var f,g: function;
...
f = function (a,b: Int) : Int is
 var t: Int;
 t = a*b;
 return t-1;
 endFunction;
...
g = f;
...
i = g(7,5);

“Lambda Expressions”

“Closures”

“Nameless Functions”

This idea is very powerful!

Programs may have more complex behavior

Programmers work at higher level of abstraction

This is like a constant.

(It is an expression.)

Within it is a new block.

13

Semantics - Part 1

© Harry H. Porter, 2005

Blocks are Nested

A
B

C

D
E

F

G

A

F

E

DC

B G

Level 0

Level 1

Level 2

Level 3

Level 4

begin A
 begin B
 begin C
 end
 begin D
 begin E
 begin F
 end
 end
 end
 end
 begin G
 end
end

A sequential scan of the

program will follow a

depth-first traversal

of this tree!

14

Semantics - Part 1

© Harry H. Porter, 2005

Blocks are Nested

A
B

C

D
E

F

G

A

F

E

DC

B G

Level 0

Level 1

Level 2

Level 3

Level 4

A
B
A

C
B
A

B
A

D
B
A

E
D
B
A

Time

begin A
 begin B
 begin C
 end
 begin D
 begin E
 begin F
 end
 end
 end
 end
 begin G
 end
end

A sequential scan of the

program will follow a

depth-first traversal

of this tree!

The symbol table

will work like a stack

openScope = push

closeScope = pop

15

Semantics - Part 1

© Harry H. Porter, 2005

Goals of Type Checking
Make sure the programmer uses data correctly.

x + y must have numeric types

x = a; types must match (or be “compatible”)

if (expr) then... type of expression must be boolean

a[i] “a” must have type array, “i” must have type integer

r.f “r” must have type record.

foo (a,b,c) args must have the right types

p* “p” must be a pointer

16

Semantics - Part 1

© Harry H. Porter, 2005

Goals of Type Checking
Make sure the programmer uses data correctly.

x + y must have numeric types

x = a; types must match (or be “compatible”)

if (expr) then... type of expression must be boolean

a[i] “a” must have type array, “i” must have type integer

r.f “r” must have type record.

foo (a,b,c) args must have the right types

p* “p” must be a pointer

Need to select the appropiate target operators.

x+y Need to determine “integerAdd” or “doubleAdd”...

17

Semantics - Part 1

© Harry H. Porter, 2005

Goals of Type Checking
Make sure the programmer uses data correctly.

x + y must have numeric types

x = a; types must match (or be “compatible”)

if (expr) then... type of expression must be boolean

a[i] “a” must have type array, “i” must have type integer

r.f “r” must have type record.

foo (a,b,c) args must have the right types

p* “p” must be a pointer

Need to select the appropiate target operators.

x+y Need to determine “integerAdd” or “doubleAdd”...

Need to insert coercion routines, where necessary.

PCAT: i/j ! int2real(i)/int2real(j)

18

Semantics - Part 1

© Harry H. Porter, 2005

Goals of Type Checking
Make sure the programmer uses data correctly.

x + y must have numeric types

x = a; types must match (or be “compatible”)

if (expr) then... type of expression must be boolean

a[i] “a” must have type array, “i” must have type integer

r.f “r” must have type record.

foo (a,b,c) args must have the right types

p* “p” must be a pointer

Need to select the appropiate target operators.

x+y Need to determine “integerAdd” or “doubleAdd”...

Need to insert coercion routines, where necessary.

PCAT: i/j ! int2real(i)/int2real(j)

Determine how much space to allocate for each variable.

Integer ! 32 bits

Double ! 64 bits

Char ! 8 bits

Boolean ! 1 bit

19

Semantics - Part 1

© Harry H. Porter, 2005

Types
Each language has its own notions of “type.”

Basic Types (also called “primitive types”)
integer, real, character, boolean

Constructed Types

Built from other types... Notations in other languages:
array of ... int [100] a;
record { ... }
pointer to ... int *p;
function (...) " ... int (* foo) (...) {...}

We must represent types within out compiler.

Might want a little language of “type expressions”.

To make explicit...

the universe of all possible types.

20

Semantics - Part 1

© Harry H. Porter, 2005

Basic Types
Each has a name

integer
real
boolean
char
...
void
type_error

Each basic type is a set of values.

Each type will have several

Predefined operators on the values

Void

A type with zero values

Used for typing functions

Type_Error

Used to deal with semantic errors (not really a type)

Close correspondence

with keywords in

the langauge

21

Semantics - Part 1

© Harry H. Porter, 2005

Array Types
PCAT array of real

Pascal array [1..10] of real

C double x [10]

Java double []

Portlandish Array [Integer,Real]

Element Type (or “Base Type”)

Can be any type

Can even be other array type

array of array of real
a[i][j] = (a[i])[j]

Index Type

Usually “integer”

 ...but other possibilities

Pascal: array [Days] of real

Often implicit, not really a part of the type

Is the size of the array part of the type???

22

Semantics - Part 1

© Harry H. Porter, 2005

Pointer Types
PCAT-style var p: ptr to integer;

Pascal var p: # integer;

C int * p;

Java MyRec p;

Element Type (or “Base Type”)

Can be any type.

Typical Operations

Comparison ==

Copy =

Dereference *p

Increment p++

Convert to/from integer p = (int *) 0x0045ff00;

23

Semantics - Part 1

© Harry H. Porter, 2005

Record Types (“Structs”)
PCAT var r: record

 value: real;
 count: integer;
 end;

C struct {
 double value;
 int count;
} r;

Java class MyRec {
 double value;
 int count;
}
MyRec r;

Each record consists of several values of different types

“components,” “fields”

Each component value has different type

The component values are identified by names (“field names”)

r.value

24

Semantics - Part 1

© Harry H. Porter, 2005

Product Types (Tuple Types)
Each tuple object consists of several component values.

Each component value has a different type.

(Similar to record types).

Component values are identified by position, not name.

To specify a product type:

Notation #1:

var t1: integer $ boolean;
 t2: real $ real $ real $ real;

Notation #2:

var t1: (integer, boolean);
 t2: (real, real, real, real);

To specify a tuple:

t1 = <6,true>;
t1 = (6,true);
t1 = [6,true];

To access the component values:

i = t1.1; i = first(t1);

x = t2.3; x = third(t2);

25

Semantics - Part 1

© Harry H. Porter, 2005

List Types
Each list object consists of zero or more values, all with the same type.

To specify a list type:

Notation #1:

var myList: list of integer;

Notation #2:

var myList: List[integer];

To get the first element of the list:

i = head(myList); i = car(myList);

To get a new list of everything else:
otherList = tail(myList); i = cdr(myList);

Add an element to the front and create a new list:
newList = cons(i,myList) newList = i.myList;

To create a list:
myList = []; myList = null;
myList = [3,5,7]; myList = 3.5.7.null;

Other operations:
length, append, isEmpty

26

Semantics - Part 1

© Harry H. Porter, 2005

Function Types
Some languages include function types.

Need to associate types with function names.

Functions are “first-class” objects (e.g., they can be stored in arrays, etc.).

To specify a function type:

Notation #1:

DomainType " RangeType

var f: integer " boolean;
 g: real $ real $ real $ real " void;

Notation #2:

function (DomainTypes) returns RangeType

var f: function (integer) returns boolean;
 g: function (real, real, real, real);

Operations:

Creation and Copy f = function (a:int) returns boolean
 ...
 return ...;
 endFunction

Application/Invocation g (1.5, 2.5, 3.5, 4.5);

Comparison is usually not allowed.

27

Semantics - Part 1

© Harry H. Porter, 2005

Working with $ and "
Assumptions:

$ is associative

 (int $ int) $ int

= int $ (int $ int)

= int $ int $ int

$ has greater precedence than "

 int $ int " int

= (int $ int) " int

" is right associative

 int " int " int

= int " (int " int)

28

Semantics - Part 1

© Harry H. Porter, 2005

Example
type Complex = real $ real;

var c: Complex;

c = <1.2, 3.4>);
<x,y> = c;

function ComplexMult: Complex $ Complex " Complex

 Complex $ Complex " Complex
 = (Complex $ Complex) " Complex
 = ((real $ real) $ (real $ real)) " (real $ real)
 = real $ real $ real $ real " real $ real

<x,y> = ComplexMult (c, <5.6,7.8>);

29

Semantics - Part 1

© Harry H. Porter, 2005

Higher-Order Functions

function AddOne: real " real;
AddOne = function (x:real) returns real
 return x + 1.0;
 endFunction;
x = AddOne(123.0);
x = AddOne(AddOne(AddOne(AddOne(AddOne(123.0))));

Imagine a function which takes 2 arguments:

•!A function, f

•!An integer, N

It returns a function which...

when applied to argument x, will apply function f, N times.

function Repeat: (real " real) $ int " (real " real);
g = Repeat(AddOne,5); // g will add 5
x = g(123.0);
x = (Repeat(AddOne,5)) (123.0);

Repeat is a “Higher-Order Function.”

At least one argument or result is another function!

30

Semantics - Part 1

© Harry H. Porter, 2005

A Syntax of Types
T " int

" real

" bool

" char

" void

" TypeError

" array of T

" list of T

" ptr to T

" record ID : T { , ID : T }+ endRecord

" T $ T

" T " T

" (T)

Represent each type with a tree

An AST

31

Semantics - Part 1

© Harry H. Porter, 2005

Using Trees To Represent Types
type T1 is (ptr to real) " (array of (integer " boolean));

 In our PCAT compiler...
array of array of record ... end;

The representation of T1...

integer

ptr array

real "

boolean

"
Array

Array

Record

32

Semantics - Part 1

© Harry H. Porter, 2005

Naming Types
Associate a name with a type.

type MyRec is record ... end;

Example:

type Complex is real $ real;

function ComplexMult (x, y: Complex) returns Complex is ...;

Or perhaps...

var ComplexMult: Complex $ Complex " Complex;

$ Complex

Complex

"

Complex

name type

Complex $ Complex " Complex

33

Semantics - Part 1

© Harry H. Porter, 2005

Naming Types
Associate a name with a type.

type MyRec is record ... end;

Example:

type Complex is real $ real;

function ComplexMult (x, y: Complex) returns Complex is ...;

Or perhaps...

var ComplexMult: Complex $ Complex " Complex;

$

"

name type

$

real real

$

real real

$

real real

real $ real $ real $ real " real $ real

34

Semantics - Part 1

© Harry H. Porter, 2005

Static v. Dynamic Type Checking
“Static” Type Checking

Performed by the compiler

Errors detected?

Print a descriptive message and keeping checking

Patch up the AST

Must cope with previous errors

35

Semantics - Part 1

© Harry H. Porter, 2005

Static v. Dynamic Type Checking
“Static” Type Checking

Performed by the compiler

Errors detected?

Print a descriptive message and keeping checking

Patch up the AST

Must cope with previous errors

“Dynamic” Type Checking
Checking done at run-time

Compiler does not know about types.
var x, y, z;
...
x = y + z;

Each variable contains:

A value

Type information (“type tags”)

Examples:

Smalltalk / Squeak

Lisp

Integer or Floating Addition?

At runtime, do y and z contain

 integers or reals or ...?

36

Semantics - Part 1

© Harry H. Porter, 2005

Untyped Languages
Example: Assembly Language

•!There may be different types of data (integer, float, pointers, etc.)

•!The programmer says which operations to use (iadd, fadd, ...)

•!A type is not associated with each variable.

•!If the programmer makes mistakes, the results are wrong.

37

Semantics - Part 1

© Harry H. Porter, 2005

Untyped Languages
Example: Assembly Language

•!There may be different types of data (integer, float, pointers, etc.)

•!The programmer says which operations to use (iadd, fadd, ...)

•!A type is not associated with each variable.

•!If the programmer makes mistakes, the results are wrong.

Strongly Typed Languages
•!Each value has an associated type.

•!Guarantees that no type-errors can happen.

Example: x = “abc”;
y = “def”;
z = x - y;

•!C/C++

Type errors can occur, especially with casting.

“It is the programmer’s responsibility!”

Error!
This operation cannot be

done on this type of data.

38

Semantics - Part 1

© Harry H. Porter, 2005

Untyped Languages
Example: Assembly Language

•!There may be different types of data (integer, float, pointers, etc.)

•!The programmer says which operations to use (iadd, fadd, ...)

•!A type is not associated with each variable.

•!If the programmer makes mistakes, the results are wrong.

Strongly Typed Languages
•!Each value has an associated type.

•!Guarantees that no type-errors can happen.

Example: x = “abc”;
y = “def”;
z = x - y;

•!C/C++

Type errors can occur, especially with casting.

“It is the programmer’s responsibility!”

Strong, Static Type Checking
•!The compiler checks all types before runtime.

•!No type-errors can occur.

Examples: Java, PCAT

Error!
This operation cannot be

done on this type of data.

39

Semantics - Part 1

© Harry H. Porter, 2005

Types In PCAT
Basic Types:

int
real
bool
string
type_of_nil

Constructed Types:
array
record

Other:
typeError

Representation of a type:

Pointer to the AST for the type

Type_Error

We’ll use “null” pointer

The type rules for “nil”

 are different
myArr := nil;
myRec := nil;

40

Semantics - Part 1

© Harry H. Porter, 2005

Approach To Static Type Checking
•!Need to describe types

A representation of types

•!Associate a type with each variable.

The variable declaration associates a type with a variable.

This info is recorded (in the symbol table).

•!Associate a type with each expression

...and each sub-expression.

•!Work bottom-up

The type is a “synthesized” attribute

•!Check operators
expr1 + expr2

Is the type of the expressions “integer” or “real”?

•!Check other places that expressions are used
LValue := Expr ;

Is the type of “expr” equal to the type of the L-Value?
if (expr) ...

Is the type of the expression “boolean”?

41

Semantics - Part 1

© Harry H. Porter, 2005

Operator Overloading

PCAT has two kinds of addition

The “+” operation is “overloaded”

Multiple meanings:
iadd
fadd

Also multiple kinds of negation, subtraction, multiplication, comparison, ...

Select correct operation based on argument types.

We’ll use the term “mode”
INTEGER_MODE
REAL_MODE

Tells which form of addition will be needed.

PCAT Example:
 var x,y: int;
 ...
 x+y
 ...

42

Semantics - Part 1

© Harry H. Porter, 2005

Type Conversions

PCAT Example:
 var i: int,
 x: real;
 ... (x + i) ...

Must convert the integer value to a real value first.

Real addition (fadd) will be used.

The result will be a real.

Implicit Type Conversions (also called “Coercions”)
•!The language definition tells when they are needed.

•!Compiler must insert special code to perform the operation.

Explicit Type Conversions (also called “Casting”)
 ... (i + (int) x) ...

•!The programmer requests a specific conversion.

•!The language definition tells when they allowed.

•!The compiler may (or may not) need to insert special code.

43

Semantics - Part 1

© Harry H. Porter, 2005

Types In PCAT: Unary Operators

Given: Type of operand

Determine: Type of result

string

array

boolbool

record

real

int

-

type error

+not

realreal

intint

Blank entries

indicate “type error”

44

Semantics - Part 1

© Harry H. Porter, 2005

Types In PCAT: Unary Operators

Given: Type of operand

Determine: Type of result

Implementation Ideas:

7 $ 3 array

ResultType[bool,not] ! bool

Sequence of IF tests...
if (op == PLUS) or (op == MINUS) then
 if typeOfOperand == int then
 resultType = int;
 elseIf typeOfOperand == real then
 resultType = real;
 else
 resultType = null; // TypeError;
 endIf
elseIf (op == NOT) then ...

string

array

boolbool

record

real

int

-

type error

+not

realreal

intint

Blank entries

indicate “type error”

45

Semantics - Part 1

© Harry H. Porter, 2005

Types In PCAT: Binary Operators

(any)type error

type error(any)

bool

and
or

bool**

bool

bool

bool*

bool*

bool

=
<>

bool

bool*

bool*

bool

<
<=
>
>=

int

div
mod

(other)

bool

real

real

int

int

Operand 1

ok*real*real*int

okrealrealreal

okbool

ok**

ok

:=

(other)

/

+
-
*

Operand 2

real*real*real

real*intint

* means the int argument(s) must be coerced to real

** means ok if the arguments are the same type

46

Semantics - Part 1

© Harry H. Porter, 2005

Types In PCAT: Binary Operators

(any)type error

type error(any)

bool

and
or

bool**

bool

bool

bool*

bool*

bool

=
<>

bool

bool*

bool*

bool

<
<=
>
>=

int

div
mod

(other)

bool

real

real

int

int

Operand 1

ok*real*real*int

okrealrealreal

okbool

ok**

ok

:=

(other)

/

+
-
*

Operand 2

real*real*real

real*intint

* means the int argument(s) must be coerced to real

** means ok if the arguments are the same type

Implementation Ideas:

Use a 7 $ 7 $ 15 array? Nah...

Switch on operator first, then on operand type.

47

Semantics - Part 1

© Harry H. Porter, 2005

Recursive Types
type MyRec is record
 info: integer;
 next: MyRec;
 end;
var x: MyRec := MyRec { info := 789;
 next := null };

48

Semantics - Part 1

© Harry H. Porter, 2005

Recursive Types
type MyRec is record
 info: integer;
 next: MyRec;
 end;
var x: MyRec := MyRec { info := 789;
 next := null };

All records and arrays will go into the “Heap”.

123info

next

456info

next

789
null

info

next

The Heap

49

Semantics - Part 1

© Harry H. Porter, 2005

Recursive Types
type MyRec is record
 info: integer;
 next: MyRec;
 end;
var x: MyRec := MyRec { info := 789;
 next := null };

All records and arrays will go into the “Heap”.

123info

next

456info

next

789info

next

The Heap

50

Semantics - Part 1

© Harry H. Porter, 2005

Recursive Types
type MyRec is record
 info: integer;
 next: MyRec;
 end;
var x: MyRec := MyRec { info := 789;
 next := null };

All records and arrays will go into the “Heap”.

123info

next

456info

next

789info

next

x

32 bits

The Heap

Our Implementation: all variables will be 32 bits

51

Semantics - Part 1

© Harry H. Porter, 2005

Recursive Types
type MyRec is record
 info: integer;
 next: MyRec;
 end;
var x: MyRec := MyRec { info := 789;
 next := null };

All records and arrays will go into the “Heap”.

123info

next

456info

next

789info

next

x

Runtime Stack of “Activation Records”

(“Stack Frames”)

32 bits

The Heap

52

Semantics - Part 1

© Harry H. Porter, 2005

Type Equivalence

What does it mean to say “type of operand 1” = “type of operand 2”?

type T1 is record
 f: int;
 g: real;
 end;
 T2 is record
 f: int;
 g: real;
 end;
 T3 is T2;
var x: T1,
 y: T2,
 z: T3;
...
x := y;

Is the type of “x” the same as the type of “y”?

Is the type of “y” the same as the type of “z”?

53

Semantics - Part 1

© Harry H. Porter, 2005

Types are represented as trees.

integer

ptr array

real "

boolean

"

integer

ptr array

real "

boolean

"

54

Semantics - Part 1

© Harry H. Porter, 2005

Types are represented as trees.

Types may be named.
type T1 is ... ;

integer

ptr array

real "

boolean

"

integer

ptr array

real "

boolean

"

T2T1 T3

55

Semantics - Part 1

© Harry H. Porter, 2005

“Structural Equivalence”
Are the trees equivalent?

Isomorphic (same shape, same nodes)

Must walk the trees to check.

integer

ptr array

real "

boolean

"

integer

ptr array

real "

boolean

"

T2T1

“Name Equivalence”
Are they the same tree?

Compare pointers

T3

56

Semantics - Part 1

© Harry H. Porter, 2005

Testing Structural Equivalence

function typeEquiv (s, t) returns boolean

 if (s and t are the same “basic” type) then
 return true

 elseif (s = “array of s1”) and (t = “array of t1”) then
 return typeEquiv (s1,t1)

 elseif (s = “s1 $ s2”) and (t = “t1 $ t2”) then
 return typeEquiv (s1,t1) and typeEquiv (s2,t2)

 elseif (s = “ptr to s1”) and (t = “ptr to t1”) then
 return typeEquiv (s1,t1)

 elseif (s = “s1 " s2”) and (t = “t1 " t2”) then
 return typeEquiv (s1,t1) and typeEquiv (s2,t2)

 else
 return false

 endIf

endFunction

