
1

CS-322 Register Allocation

© Harry H. Porter, 2006

Accessing Variables

How can we generate code for “x”?

a := x + y

The variable may be in a register:
ADD ...,Rx,...

The variable may be in a static memory location:
SET x,Rw
LD [Rw],Rx
ADD ...,Rx,...

The variable may be a local variable:
LD [%fp+offsetx],Rx
ADD ...,Rx,...

The variable may be a non-local variable:
SET display4,Rw
LD [Rw],Rw
LD [Rw+offsetx],Rx
ADD ...,Rx,...

Another register
(perhaps the same?)

 .data
display5: .word
display4: .word
 •••
display1: .word
display0: .word

A “work” register

x:

2

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Strategies

Option 1

Keep every variable in memory at all times.

Use 1 or 2 “work” registers during code generation.

Code Generator #1:

Every statement in isolation.

Variables in memory between each IR instruction.

Option 2

Keep all variables in memory between basic blocks.

Generate code for each basic block in isolation.

Within the basic block, use registers to hold values.

At the end of the basic block,

store all (LIVE) variables back to memory.

3

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Strategies

Option 3
Divide registers into groups

•!Work registers (e.g., R0-R4)
•!Variable storage (e.g., R5-R23)
•!Other (e.g., %fp, not available for variable storage)

Look at the entire flow graph.
Select some variables that are used “a lot.”
Put them in registers for the entire routine.

Beginning of routine: generate a “LOAD”
End of routine: generate a “STORE”

Remaining variables: Keep in memory
Generate LOADs and STOREs when they are accessed.

Problems:
•!Non-local access?

Other routines expect variable to be in memory.
Identify variables that are used only locally.
Generate STOREs before each CALL

•!How to select variables?
A variable used only 2 times... but within a loop!

Register Class / Pragmas

4

CS-322 Register Allocation

© Harry H. Porter, 2006

Terminology

“Local Register Allocation”

Register allocation is done for the entire basic block.

... But each basic block is done independently.

“Global Register Allocation”

Register allocation is done for the entire flow graph / routine.

... But each routine is done independently.

Option 2 + 3
Set aside some registers for

“Local Allocation” -- within the basic block
“Global Allocation” -- for the entire routine

5

CS-322 Register Allocation

© Harry H. Porter, 2006

Global Register Allocation

Option 4
“Global Register Allocation”
Look at the entire flow graph.

Look at variable lifetimes
Identify “Live Ranges”
Map each Live Range into a register

Graph-Coloring Algorithm

6

CS-322 Register Allocation

© Harry H. Porter, 2006

The Register-To-Register Model
(Approach used in textbook)

Assume an infinite number of registers

“Virtual Registers”

During code generation... an inexhaustable supply.

Example: a := (x + y) * z;

LOAD [%fp+offsetx],Rx
LOAD [%fp+offsety],Ry
ADD Rx,Ry,Rtmp1
LOAD [%fp+offsetz],Rz
MULT Rtmp1,Rz,Rtmp2
STORE Rtmp2,[%fp+offseta]

The Register Allocation Phase

After target code generation

A limited supply of “Physical Registers”

Must select which Virtual Regs will go into Physical Regs.

When there are not enough Physical Regs...

Generate STOREs and LOADs

“Spill” instructions

7

CS-322 Register Allocation

© Harry H. Porter, 2006

The Memory-To-Memory Model
Don’t worry about registers.
Keep all variables in memory.
During code generation... an inexhaustable supply of temporary variables.

Example: a := (x + y) * z;
ADD x,y,tmp1

MULT tmp1,z,tmp2

STORE tmp2,a

(This is the approach taken in our compiler.)

The Register Allocation Phase
After target code generation
A limited supply of “Physical Registers”
Must select which variables will go into Physical Registers.
Some variables are selected for “promotion” to registers.

Must generate LOADs and STOREs.

The approaches are similar.

8

CS-322 Register Allocation

© Harry H. Porter, 2006

Unambiguous Memory References
Consider this source code:

...
x := a + b;
...

...
c := x + 4;

Can we keep “x” in a register?

9

CS-322 Register Allocation

© Harry H. Porter, 2006

Unambiguous Memory References
Consider this source code:

var p: ptr to integer;
p := &x;
...
x := a + b;
...
*p := ...;
...
c := x + 4;

Can we keep “x” in a register?

10

CS-322 Register Allocation

© Harry H. Porter, 2006

Unambiguous Memory References
Consider this source code:

var p: ptr to integer;
p := &x;
...
x := a + b;
...
*p := ...;
...
c := x + 4;

Can we keep “x” in a register?

“Unambiguous Memory Reference”

Given a variable “x”...
Is there any other way to get at that memory location?

If so...
Must keep the value in memory.

If not...
Okay to keep the value in a register.

11

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation Algorithm

•!Assume the code uses “Virtual Registers”

• Look at each basic block in isolation (a “local” approach)

• Identify all the virtual registers used in the basic block.

•!Assign a “priority” to each virtual register.

Run through the instructions.

Count the number of times the virtual register is used.

•!Assume that we have K physical registers available.

Identify the K virtual registers with the highest priority

Assign each to one of the physical registers.

•!Run through the instructions and replace all uses of virt. registers.

If the virtual register has been assigned to a phys register, use that.

Otherwise, generate LOADs and STOREs as necessary.

Must set aside a couple of “work” registers for this.

Move the variable into a work register.

Use it.

Store it back in memory.

12

CS-322 Register Allocation

© Harry H. Porter, 2006

Global Register Allocation
Assign a variable to a register.
Keep it in register at all times, across Basic Block boundaries.

Problem: Non-Local Accesses

Call a subroutine?
It uses registers in its own ways.
[Will save any registers it modifies.]
It expects non-local variables to be

stored in their frames, buried in the stack.

Solution #1:

Save all variables back to memory whenever a call is made.
store r3,[fp-4]

store r4,[fp-8]

store r5,[fp-12]

...

call foo

load [fp-4],r3

load [fp-8],r4

load [fp-12],r5

...

13

CS-322 Register Allocation

© Harry H. Porter, 2006

Global Register Allocation
Assign a variable to a register.
Keep it in register at all times, across Basic Block boundaries.

Problem: Non-Local Accesses

Call a subroutine?
It uses registers in its own ways.
[Will save any registers it modifies.]
It expects non-local variables to be

stored in their frames, buried in the stack.

Solution #2:

Identify which variables are...
•!accessed only locally
•!accessed non-locally

Keep only “only locally accessed” variables in registers.
Approximation:

Keep track of compiler-generated temporaries
Keep only these in registers

But the real benefit is to keep heavily used variables in registers!

14

CS-322 Register Allocation

© Harry H. Porter, 2006

Global Alloation for Loops

Idea:
Identify Loops
Use Global Register Allocation for the duration of the loop

•!Identify the basic blocks in a loop.
•!Before going into the loop...

Move variables into registers
• Within the loop...

Just use the registers.

Issues:
•!How many registers for global register allocation?

How many registers for “working storage”?
•!Which variables to put into registers?

Choose “heavily used” variables
•!Nested Loops [“inner loop” / “outer loop”]

Do the inner loops first.
•!How to identify loops?

15

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Goal:
Keep all variables in registers

Keep each variable in a different register

...unless they are never LIVE simultaneously!

Example: “x” and “y”

Both LIVE at some point in the code?

! Must put into different registers

Never LIVE at the same time?

! May keep them in the same register!

16

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assumptions:

Memory-to-memory model

Lots of variables

Assign each to a register

Register-to-register model

Lots of (virtual) registers

Assign each Virtual Register to a Physical Register

(We’ll discuss the first.)

17

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Step 1:
Construct the “Interference Graph”

Nodes: Variables

Undirected Edges:

If variable “x” is LIVE at the point where

 variable “y” is defined...

Add an edge between “x” and “y.”

Intuition:

The edge means that “x” and “y” must go

 into different regs.

A

W

Y

Z
X

This occurs iff
“x” and “y” are LIVE

at the same time.

18

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Coloring a Graph
Given: A graph with undirected edges

Goal: Assign a color to each node

Such that:

Adjacent nodes have different colors.

A “coloring” of the graph.

Coloring the Graph with K Colors
Assume we have only K different colors.

A “K-Coloring” of the graph.

A

W

Y

Z
X

Example:

Find a 3-Coloring

19

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Coloring a Graph
Given: A graph with undirected edges

Goal: Assign a color to each node

Such that:

Adjacent nodes have different colors.

A “coloring” of the graph.

Coloring the Graph with K Colors
Assume we have only K different colors.

A “K-Coloring” of the graph.

A

W

Y

Z
X

Example:

Find a 3-Coloring

20

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Coloring a Graph
Given: A graph with undirected edges

Goal: Assign a color to each node

Such that:

Adjacent nodes have different colors.

A “coloring” of the graph.

Coloring the Graph with K Colors
Assume we have only K different colors.

A “K-Coloring” of the graph.

A

E

B

C

D

Example:

Find a 3-Coloring

21

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Coloring a Graph
Given: A graph with undirected edges

Goal: Assign a color to each node

Such that:

Adjacent nodes have different colors.

A “coloring” of the graph.

Coloring the Graph with K Colors
Assume we have only K different colors.

A “K-Coloring” of the graph.

A

E

B

C

D

Example:

Find a 3-Coloring

Not Possible!

(but it is 4-Colorable)

22

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assume we have K physical registers.
Find a K-Coloring of the graph.

Example: K=3
R0 = Blue
R1 = Red
R2 = Green

A

B

YZ

X

23

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assume we have K physical registers.
Find a K-Coloring of the graph.
The coloring is an assignment

of variables to registers.

Example: K=3
R0 = Blue
R1 = Red
R2 = Green

A: R0
B: R1
X: R2
Y: R1
Z: R0

A

B

YZ

X

24

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assume we have K physical registers.
Find a K-Coloring of the graph.
The coloring is an assignment

of variables to registers.

Can we color a graph using only K colors?
(“Is the graph K-Colorable?”)

Example: K=3
R0 = Blue
R1 = Red
R2 = Green

A: R0
B: R1
X: R2
Y: R1
Z: R0

A

B

YZ

X

25

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assume we have K physical registers.
Find a K-Coloring of the graph.
The coloring is an assignment

of variables to registers.

Can we color a graph using only K colors?
(“Is the graph K-Colorable?”)

Unfortunately
Answering this question is NP-Complete

" Exponentially hard

Example: K=3
R0 = Blue
R1 = Red
R2 = Green

A: R0
B: R1
X: R2
Y: R1
Z: R0

A

B

YZ

X

26

CS-322 Register Allocation

© Harry H. Porter, 2006

Register Allocation via Graph Coloring

Assume we have K physical registers.
Find a K-Coloring of the graph.
The coloring is an assignment

of variables to registers.

Can we color a graph using only K colors?
(“Is the graph K-Colorable?”)

Unfortunately
Answering this question is NP-Complete

" Exponentially hard

Fortunately
We have a good heuristic algorithm

Gregory Chaitin
Finds a K-Coloring (usually)
If problems (i.e., not enough registers)

Generate “spill” instructions and keep going.

Example: K=3
R0 = Blue
R1 = Red
R2 = Green

A: R0
B: R1
X: R2
Y: R1
Z: R0

A

B

YZ

X

27

CS-322 Register Allocation

© Harry H. Porter, 2006

The Graph Coloring Algorithm
REPEAT

Find a node with fewer than K neighbors.
Eliminate that node (and its edges).

(If you can find a K-Coloring for the smaller graph,
then all you have to do is add back this node
and give it a color that is different from the
colors of its neighbors.)

UNTIL all nodes have been eliminated

28

CS-322 Register Allocation

© Harry H. Porter, 2006

The Graph Coloring Algorithm
REPEAT

Find a node with fewer than K neighbors.
Eliminate that node (and its edges).

(If you can find a K-Coloring for the smaller graph,
then all you have to do is add back this node
and give it a color that is different from the
colors of its neighbors.)

UNTIL all nodes have been eliminated

Remember the order of elimination.

Add back the nodes in reverse order,
assigning colors as you go.

29

CS-322 Register Allocation

© Harry H. Porter, 2006

The Graph Coloring Algorithm
REPEAT

Find a node with fewer than K neighbors.
Eliminate that node (and its edges).

(If you can find a K-Coloring for the smaller graph,
then all you have to do is add back this node
and give it a color that is different from the
colors of its neighbors.)

UNTIL all nodes have been eliminated

Remember the order of elimination.

Add back the nodes in reverse order,
assigning colors as you go.

No nodes with fewer than K-neighbors?

This algorithm fails to find a K-Coloring.
...even though one may exist!

Will need to generate LOAD and STORE
instructions for this variable.

30

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

31

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

32

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated:

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

33

CS-322 Register Allocation

© Harry H. Porter, 2006

A

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: A

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

34

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AF

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

FA

B

C

D

E

35

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFC

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

C

FA

B D

E

36

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCB

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

FA

D

E

37

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBD

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

FA

E

38

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order:

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

39

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

40

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

F

E

A

41

CS-322 Register Allocation

© Harry H. Porter, 2006

E

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

D

FA

E

42

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

B

C

FA

D

E

D

E

43

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

C

FA

B D

E

44

CS-322 Register Allocation

© Harry H. Porter, 2006

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

FA

C

D

E

B

45

CS-322 Register Allocation

© Harry H. Porter, 2006

A F

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

D

EC

B

46

CS-322 Register Allocation

© Harry H. Porter, 2006

A

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

D

EC

B

F

47

CS-322 Register Allocation

© Harry H. Porter, 2006

A

Example

“A” and “B” are simultaneously LIVE.

Need to add an edge.

Assume K=3 registers are available.

R0 = Blue

R1 = Red

R2 = Green

Order Eliminated: AFCBDE

Reverse Order: EDBCFA

Add Nodes Back, assigning colors.

...

A := 47

B := 13

...

...:= ...A...

...

...

 “A” is LIVE here,
At the point where
“B” is defined.

D

EC

B

F

Register
Assignment:
A: R0
B: R2
C: R2
D: R1
E: R0
F: R2

