
1

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Global Data_Flow Analysis

Examples:

Reaching Definitions:
Which DEFINITIONs reach which USEs?

LIVE Variable Analysis:
Which variables are live at a given point, P?

Global Sub-Expression Elimination:
Which expressions reach point P

and do not need to be re-computed?

Copy Propagation:
Which copies reach point P?

Can we do copy propagation?

2

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Terminology
A “point”

between two adjacent statements in a basic block,

or directly before the basic block,

or directly after the basic block.

a := b+c
c := b-d
e := a*c
if a<6 goto...

a := c+1
d := a+d
b := b-5

d := e-f
f := a+d

3

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Terminology
A “point”

between two adjacent statements in a basic block,

or directly before the basic block,

or directly after the basic block.

A “path”
is a sequence of points from P1 to PN such that...

control could flow from P1 to PN.

The path may traverse several blocks.

a := b+c
c := b-d
e := a*c
if a<6 goto...

a := c+1
d := a+d
b := b-5

d := e-f
f := a+dfrom here

to here

4

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Reaching Definitions

A “definition” of variable x
A statement that assigns to x (or might assign to x).

Ambiguous Definitions -- Might assign

Unambiguous Definitions -- Will definitely assign

Examples

x := ...;

read (x);

call foo (... x ...)

call foo ()

*p := ...;

y := ...;

Where x is passed by reference,
by copy-restore, or by name

Where the function may
access X as a non-local

Pointer assignment

Aliasing

Unambiguous; will
definitely change x

5

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

“Killing” Definitions

A definition is “killed” along a path...
if there is an unambiguous definition of the variable.

...

x := a+b

c := b*d

e := a-x

x := x+c

b := a+e

c := x+a

...

This definition...

is killed by this statement...

before it reaches this point

6

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

A definition D “reaches” a point P...
if there is a path from D to P along which D is not killed.

If “x” is defined at D, then the value given to “x” might be

the value of “x” at point P.

When D reaches P, it means...

The value of “x” might reach P at runtime.

7

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

A definition D “reaches” a point P...
if there is a path from D to P along which D is not killed.

If “x” is defined at D, then the value given to “x” might be

the value of “x” at point P.

When D reaches P, it means...

The value of “x” might reach P at runtime.

D1: x := a+b
D2: y := c+d
 ...

d := a*b
b := x+y

x := c
y := e-d

y := b+1

B1

B2 B3

B4

Does D1 reach P?

Does D2 reach P?

Point P

8

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

A definition D “reaches” a point P...
if there is a path from D to P along which D is not killed.

If “x” is defined at D, then the value given to “x” might be

the value of “x” at point P.

When D reaches P, it means...

The value of “x” might reach P at runtime.

D1: x := a+b
D2: y := c+d
 ...

d := a*b
b := x+y

x := c
y := e-d

y := b+1

B1

B2 B3

B4

Does D1 reach P? YES

Does D2 reach P? NO

Point P

9

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Safe, Conservative Estimates

Will the value of x reach point P?
The runtime value of variables may cause some paths to
It may be the case that... NEVER be taken.
 In ALL executions, control ALWAYS passes through B2...

D may get killed in every execution!
The value of “x” may never reach point P!

Nevertheless, we say “D reaches P”.

D1: x := a+b
D2: y := c+d
 ...

d := a*b
b := x+y

x := c
y := e-d

y := b+1

B1

B2 B3

B4 Point P

It is undecideable (in general)
to determine statically which paths

will be taken at runtime.

10

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable “x”...

build a list of all the DEFINITIONs of “x”

that reach this USE.

 ...
 d := x * b

 c := e - x

 x := b + c

 g := a - 1

 b := a + x
 ...

 ...
x := a+b

 ...
x := c+d

11

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable “x”...

build a list of all the DEFINITIONs of “x”

that reach this USE.

 ...
 d := x * b

 c := e - x

 x := b + c

 g := a - 1

 b := a + x
 ...

 ...
x := a+b

 ...
x := c+d

[]

[, , , ...]

12

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

USE-DEFINITION Chains (U-D Chains)

For each USE of some variable “x”...

build a list of all the DEFINITIONs of “x”

that reach this USE.

 ...
 d := x * b

 c := e - x

 x := b + c

 g := a - 1

 b := a + x
 ...

 ...
x := a+b

 ...
x := c+d

[]

[, , , ...]

13

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

If we can deduce that the set of definitions

reaching this point contains

ONLY the assignment D to “x”,

then it is okay to substitute 5 for “x” here

D: x := 5

y := x * 2

•••

14

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

DEFINITION-USE Chains (D-U Chains)

A variable is USED at statement S if

its value may be required.

For each DEFINITION of a variable...

compute a list of all possible USEs of that variable.

z := a + x
...

y := x * 3
...
x := a

 ...
z := x + y
 ...
x := x + 1

[, ,]
 ...
x := a + b
 ...

but not here

15

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

If we can deduce that the definition D

has NO POSSIBLE USES

then D is “DEAD” (useless code)

and can be eliminated !

 ...

D: x := 5
 ...

16

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

The Universe
U = Universe

= the set of all DEFINITIONs in the program / CFG
Number them D1, D2, D3, ...

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

Example:

17

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Representing Sets
We will work with sets.

How to represent?

Each set is represented with a Bit Vector

D1 D2 D3 D4 D5 D6 D7

0 1 0 1 0 0 1

Example

A = { D2, D4, D7}

A’ =

18

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Representing Sets
We will work with sets.

How to represent?

Each set is represented with a Bit Vector

How to compute set operations?

Set Union
A ! B "

Set Intersection
A # B "

Set Difference
A – B "

D1 D2 D3 D4 D5 D6 D7

0 1 0 1 0 0 1

Example

A = { D2, D4, D7}

A’ =

19

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Representing Sets
We will work with sets.

How to represent?

Each set is represented with a Bit Vector

How to compute set operations?

Set Union
A ! B " A’ or B’

Set Intersection
A # B " A’ and B’

Set Difference
A – B " A’ and (not B’)

D1 D2 D3 D4 D5 D6 D7

0 1 0 1 0 0 1

Example

A = { D2, D4, D7}

A’ =

20

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Approach
Figure out what happens in each basic block...

GEN[B] =

•!The set of definitions appearing in block B

which reach the end of B

(without being KILLed before the end of the block)

KILL[B] =

•!The set of definitions KILLed by statements in block B.

•!If B contains an unambiguous definition of variable “x”,

then add all definitions of “x” to KILL[B].

(unless the definition D of “x” also occurs in B and

there are no unambiguous definitions between D

and the end of B).

Use this info to do the entire flow graph...

Using DATA FLOW EQUATIONS

In the text: DEDef()

In the text: DefKill()

21

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example of GEN [B]
Consider this Basic Block:

Consider D5, a definition of “c”...

Add D5 to GEN [B].

Consider D6, a definition of “x”...

But this is KILLed before the end of the block.

Consider D7, a definition of “x”...

Add D7 to GEN [B].

GEN [B] = {D5 , D7 }

D5: c := e - x
D6: x := b + c

D7: x := a - 4

B

22

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example of KILL [B]
Consider this Basic Block:

Consider D5, an unambiguous defintion of “c”...

Add all other definitions of “c” to KILL [B].

(Except, do not add D5 itself,

since this definition “makes it to the end of the block”.)

Consider D7, an unambiguous defintion of “x”...

Add all other definitions of “x” to KILL [B]

(Except, do not add D7 itself,

since this definition “makes it to the end of the block”.)

D5: c := e - x
D6: x := b + c

D7: x := a - 4

B

23

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Overview of the Computation

For every point in the program...

we want to know which definitions can reach that point.

We will compute the set of definitions that can

reach the beginning of a basic block:

IN [B]

Then, using GEN [B] and KILL [B], we will compute the set of

definitions reaching the end of the basic block:

OUT [B]

Then we will use OUT [B] to compute the set of definitions

that can reach other basic blocks.

... And we will repeat, until we learn which

definitions could possibly reach which blocks.

In the text: Reaches()

24

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

The Data Flow Algorithm

Approach:
Build the IN and OUT sets simultaneously,

by successive approximations!

Given:
A control flow graph of basic blocks.

Assume:
GEN[B] and KILL[B] have already be computed

for each basic block.

Output:
IN[B] and OUT[B] for each basic block.

25

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Start by setting IN[B] to {} for each basic block.

Then compute OUT[B] from the previous estimate of IN[B].

Finally, propagate OUT[B] to the IN[B’]

for all successor blocks to B.

Repeat, until no more changes.

As the definitions “flow through the graph”,

the IN and OUT sets grow and grow.

The approximation gets closer and closer.

Conservative: May overestimate

how far definitions will reach.

(i.e., the results may be larger than “truly” necessary.)

26

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

A Recurrence
(a set of simultaneous equations)

P1OUT$
P2OUT$

P3OUT$

B
OUT$

IN$

!

!f(i)

0<i<N

IN[B] := OUT[P]

 P is a predecessor of B

OUT[B] := GEN[B] ! (IN[B] - KILL[B])

27

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

 OUT

for each block B do
 OUT[B] := GEN[B]
endfor

while change do

 for each block B do

 IN[B] := ! OUT[P]
 P is a predecessor of B

 OUT[B] := GEN[B] ! (IN[B] - KILL[B])

 endfor
endwhile

P1OUT$
P2OUT$

P3OUT$

B
OUT$

IN$

!IN[B] := OUT[P]

 P is a predecessor of B

OUT[B] := GEN[B] ! (IN[B] - KILL[B])

Initialize OUT on the
 assumption that
 IN[B] = {} for all blocks.

28

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

 OUT

for each block B do
 OUT[B] := GEN[B]
endfor
change := true
while change do
 change := false
 for each block B do

 IN[B] := ! OUT[P]
 P is a predecessor of B

 OLD_OUT := OUT[B]

 OUT[B] := GEN[B] ! (IN[B] - KILL[B])
 if OUT[B] % OLD_OUT then
 change := true
 endif
 endfor
endwhile

P1OUT$
P2OUT$

P3OUT$

B
OUT$

IN$

!IN[B] := OUT[P]

 P is a predecessor of B

OUT[B] := GEN[B] ! (IN[B] - KILL[B])

Initialize OUT on the
 assumption that
 IN[B] = {} for all blocks.

29

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

B1 B3 B4B2

30

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

B1 B3 B4B2

31

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

OUT 111 0000 001 1100 000 1110 000 0111

B1 B3 B4B2

32

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

OUT 111 0000 001 1100 000 1110 000 0111

 IN 000 0000 111 0111 001 1100 001 1110

B1 B3 B4B2

33

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

OUT 111 0000 001 1100 000 1110 000 0111

 IN 000 0000 111 0111 001 1100 001 1110

OUT 111 0000 001 1110 000 1110 001 0111

B1 B3 B4B2

34

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

OUT 111 0000 001 1100 000 1110 000 0111

 IN 000 0000 111 0111 001 1100 001 1110

OUT 111 0000 001 1110 000 1110 001 0111

 IN 000 0000 111 0111 001 1110 001 1110

B1 B3 B4B2

35

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

GEN[B1] = { D1, D2, D3 }
 1 1 1 0 0 0 0

KILL[B1] = { D4, D5 , D6 , D7 }
 0 0 0 1 1 1 1

GEN[B2] = { D4, D5 }
 0 0 0 1 1 0 0

KILL[B2] = { D1, D2, D7 }
 1 1 0 0 0 0 1

GEN[B3] = { D6 }
 0 0 0 0 0 1 0

KILL[B3] = { D3 }
 0 0 1 0 0 0 0

GEN[B4] = { D7 }
 0 0 0 0 0 0 1

KILL[B4] = { D1, D4 }
 1 0 0 1 0 0 0

OUT 111 0000 000 1100 000 0010 000 0001

 IN 000 0000 111 0001 000 1100 000 1110

OUT 111 0000 001 1100 000 1110 000 0111

 IN 000 0000 111 0111 001 1100 001 1110

OUT 111 0000 001 1110 000 1110 001 0111

 IN 000 0000 111 0111 001 1110 001 1110

OUT 111 0000 001 1110 000 1110 001 0111

B1 B3 B4B2

36

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

 IN 000 0000 111 0111 001 1110 001 1110

OUT 111 0000 001 1110 000 1110 001 0111

B1 B3 B4B2

D1: i := m-1
D2: j := n
D3: a := w

D4: i := i+1
D5: j := j-1
 if...

D7: i := z
 if...

D6: a := y

B1

B2

B3

B4

IN= { }

OUT={ D1, D2, D3 }

IN={D1,D2,D3,D5,D6,D7}

OUT={ D3, D4 , D5 , D6 }

IN={ D3, D4 , D5 , D6 }

OUT={ D3, D5 , D6 , D7 }

IN={ D3,D4,D5,D6 }

OUT={ D4, D5, D6 }

37

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

This algorithm converges.

OUT[B] never decreases...

Once in OUT[B] a definition stays there.

Eventually, no changes will be made to OUT[B].

An upper bound on the “while” loop?

Number of nodes in the flow graph.

Each iteration propagates reaching definitions.

The “while” loop will converge quickly

...if you select a good order for the nodes in the “for”

loop.

This algorithm is efficient in practice.

38

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

LIVE Variable Analysis

A similar Data Flow Algorithm

Goal: Compute IN[] and OUT[]

However, it will work backwards!

(i.e., data will flow “upwards”, against the arrow directions)

Given: Compute:

Which
variables
are LIVE
here

Which
variables
are LIVE
here

39

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

LIVE Variable Analysis
Then:

Compute the OUT set from

all the IN sets of the block’s successors!

40

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

LIVE Variable Analysis
Then:

Compute the OUT set from

all the IN sets of the block’s successors!

Given Given

41

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

LIVE Variable Analysis
Then:

Compute the OUT set from

all the IN sets of the block’s successors!

Compute

Given Given

42

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

LIVE Variable Analysis
Then:

Compute the OUT set from

all the IN sets of the block’s successors!

Compute

Given Given

Info flows upwards !
“against” the flow graph edges

43

CS-322 Optimization, Part 3

© Harry H. Porter, 2006 Note these re-definitions

Definitions
Variable “x” is LIVE at some point P

if its value might be used at some point later,

on a path starting at P.

DEF [B] = the set of variables definitely

assigned values in block B

(prior to any use in B)

USE [B] = the set of variables whose values

may be used in B

(prior to any definitions of the variable)

IN [B] = the set of variables LIVE at the beginning of B

OUT [B] = the set of variables LIVE at the end of B

Note these re-definitions

44

CS-322 Optimization, Part 3

© Harry H. Porter, 2006 Note these re-definitions

Definitions
Variable “x” is LIVE at some point P

if its value might be used at some point later,

on a path starting at P.

DEF [B] = the set of variables definitely

assigned values in block B

(prior to any use in B)

USE [B] = the set of variables whose values

may be used in B

(prior to any definitions of the variable)

IN [B] = the set of variables LIVE at the beginning of B

OUT [B] = the set of variables LIVE at the end of B

Note these re-definitions

Text: UEVar()

Text: VarKill()

Text: LiveOut()

45

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Recurrence Equations to be Solved:

B

!
IN[B] := USE[B] ! (OUT[B] - DEF[B])

OUT[B] := IN[S]

 S is a successor of B

x,y LIVE z LIVE w,x LIVE

46

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Recurrence Equations to be Solved:

B
& w,x,y,z must be LIVE here

!
IN[B] := USE[B] ! (OUT[B] - DEF[B])

OUT[B] := IN[S]

 S is a successor of B

x,y LIVE z LIVE w,x LIVE

47

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

 Algorithm to Compute LIVE Variables
Input:

Flow graph of basic blocks
DEF and USE for each block

Output:
OUT[B] = Live variables at end of B

Algorithm:
 for each block B do
 IN[B] := {}
 endfor
 while changes occur for any IN set do
 for each block B do

 OUT[B] := ! IN[S]
 S is a successor of B

 IN[B] := USE[B] ! (OUT[B] - DEF[B])

 endfor
 endwhile

S1
IN$

S2
IN$

S3
IN$

B
OUT$

IN$

48

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Compute LIVE variables

At the end of each block.

a := b*d
b := a-d
 <none>

d := b*d
 a,b,c,d,e

d := a+b
e := e+1
 a,b,c,d,e

b := a+b
e := c-a
 a,b,d,e

c := a+b
d := c-a
 a,b,c,d,e

a := 1
b := 2
 a,b,e

B1

B2

B5

B6

B3

B4

49

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Computing Available Expressions
An “expression”:

 x ' y

Binary expressions only

Any operator: +, –, *, ...

 Examples: a–b, w+x, y*4, ...

An expression is “available” at point P if every path to P computes it

and there are no subsequent assignments to x or y

(between the last evaluation of x ' y and P)

A block “generates” x ' y if it evaluates x ' y

and does not subsequently assign to x or y.

A block “kills” x ' y if it assigns to x or y

without subsequently recomputing x ' y.

50

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

51

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

52

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

53

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

Avail = { y+z }

54

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

Avail = { y+z }

Avail = { x-w }

55

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

Avail = { y+z }

Avail = { x-w }

Avail = { x-w, w+z }

56

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

Avail = { y+z }

Avail = { x-w }

Avail = { x-w, w+z }

Avail = { x-w }

57

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Example

Which expressions are available?

 U = { y+z , x-w , w+z }

x := y + z

y := x - w

a := w + z

z := x - w

y := y + z

Avail = {}

Avail = { y+z }

Avail = { x-w }

Avail = { x-w, w+z }

Avail = { x-w }

Avail = { x-w }

58

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Computing Available Expressions
The Universe

= The set of all expressions appearing in the flow graph

 Example: U = { a–b, w+x , y*4 , x+1 , b–c }

E_GEN [B] =
The set of expressions computed in the block

 x ' y is included if some statement in B evaluates it

and the block does not assign to x or y after that.

E_KILL [B] =
The set of expressions that are invalidated because

the block contains an assignment to a variable they use.

E_IN [B] =
The set of expressions available at the beginning of block B.

E_OUT [B] =
The set of expressions available at the end of block B.

59

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Computing Available Expressions
The Universe

= The set of all expressions appearing in the flow graph

 Example: U = { a–b, w+x , y*4 , x+1 , b–c }

E_GEN [B] =
The set of expressions computed in the block

 x ' y is included if some statement in B evaluates it

and the block does not assign to x or y after that.

E_KILL [B] =
The set of expressions that are invalidated because

the block contains an assignment to a variable they use.

E_IN [B] =
The set of expressions available at the beginning of block B.

E_OUT [B] =
The set of expressions available at the end of block B.

Text: DEExpr()

Text: ExprKill()

Text: Avail()

60

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

E_OUT[B] := E_GEN[B] ! (E_IN[B] - E_KILL[B])

E_IN[B] := E_OUT[P]

 P is a predecessor of B

E_IN[B1] = {}

Recurrence Equations to be Solved:

For B % B1
 (the initial block)

Nothing available before the initial block

61

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Forward Propagation

(like reaching definitions, but # instead of !)

Reaching Definitions
Start with estimates that are

too small, and enlarge them.

IN[B] = OUT[P]

 p=predecessor

Available Expressions
Start with estimates that are

too large, and shrink them.

E_IN[B] = E_OUT[P]

 p=predecessor

x := ...

.... x ...!

#

a := x ' y b := x ' y

c := x ' y

62

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

 Algorithm to Compute Available Expressions
Input:

E_GEN and E_KILL for each block

Output:

E_IN[B] = Expressions available at begining of B

Algorithm:

 E_IN[B1] := {}

 E_OUT[B1] := E_GEN[B1]

 for each block B except B1 do

 E_OUT[B] := U - E_KILL[B]
 endfor

 while changes occur for any E_OUT set do

 for each block B except B1 do

 E_IN[B] := # E_OUT[P]
 P is a predecessor of B

 E_OUT[B] := E_GEN[B] ! (E_IN[B] - E_KILL[B])

 endfor

 endwhile

63

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Conservative, Safe Estimates

•!Begin by assuming all expressions available anywhere.

• Work toward a smaller solution.

•!If there is a possible definition of x or y

then consider x ' y as not available.

•!We will tend to err by eliminating too many expressions

from E_IN and E_OUT.

•!Our computed result will be a subset of the expressions

that are truly available at point P.

•!If our computation determines that x ' y is available

at point P, then it surely is.

We can eliminate its recomputation!

64

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Eliminating Common Global Subexpressions

The Transformation

a := x ' y b := x ' y

w := x ' y

••••••

65

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Eliminating Common Global Subexpressions

The Transformation

t := x ' y

a := t

t := x ' y

b := t

w := x ' y

••••••
Create a new temporary.

66

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Eliminating Common Global Subexpressions

The Transformation

t := x ' y

a := t

t := x ' y

b := t

w := t

••••••

And use it here.

67

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Eliminating Common Global Subexpressions

The Transformation

t := x ' y

a := t

t := x ' y

b := t

w := t

••••••

Copy Propagation may

eliminate these statements.

68

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Input: Flow Graph, Available Expression Information

Output: Revised Flow Graph

Step 1:

Find a statement such as

w := x ' y

such that expression x ' y is available directly before it.

[Or: x ' y is available in E_IN[B] for the block and there

are no assignments to x or y before this statement.]

69

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Input: Flow Graph, Available Expression Information

Output: Revised Flow Graph

Step 1:

Find a statement such as

w := x ' y

such that expression x ' y is available directly before it.

[Or: x ' y is available in E_IN[B] for the block and there

are no assignments to x or y before this statement.]

Step 2:

Follow the flow graph edges backward until you hit

an evaluation of x ' y. Find all such evaluations.

b := x ' y

w := x ' y

a := x ' y

c := x ' y

•••

•••

70

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Step 3:

Create a new temporary (say “t”)

71

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Step 3:

Create a new temporary (say “t”)

Step 4:

Replace all statements found in step 2.

a := x ' y

t := x ' y
a := t

b := x ' y

t := x ' y
b := t

c := x ' y

t := x ' y
c := t

72

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Step 3:

Create a new temporary (say “t”)

Step 4:

Replace all statements found in step 2.

Step 5:

Replace

a := x ' y

t := x ' y
a := t

b := x ' y

t := x ' y
b := t

c := x ' y

t := x ' y
c := t

w := x ' y

w := t

73

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Algorithm
Step 3:

Create a new temporary (say “t”)

Step 4:

Replace all statements found in step 2.

Step 5:

Replace

a := x ' y

t := x ' y
a := t

b := x ' y

t := x ' y
b := t

c := x ' y

t := x ' y
c := t

w := x ' y

w := t

Notes:

•!Copy propagation may eliminate some of

the extra assignments (but might not)

• Program size could grow

• Want to limit this effect...

If more than 1 statement found

in step 2, just forget it.

74

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Propagation
A copy statement

x := y

Where do the copies come from:

•!IR code generation

•!Common Sub-Expression Elimination

•!Other Optimizations

75

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Propagation

We can use y instead of x if...

•!The only definition of x reaching a := b'x is x := y, and

•!There is no assignment to y on any path

from x := y to a := b'x.

x := y

•••
y

a := b ' x

76

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Propagation

x := y

a := b ' x

There must be no
 assignment to y on any path
 from x := y to a := b ' x

77

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Propagation

We can not propagate the copy in this example:

x := y

a := b ' x

y := 47

There must be no
 assignment to y on any path
 from x := y to a := b ' x

78

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

We can use y instead of x if...

•!The only definition of x reaching a := b'x is x := y, and

• There is no assignment to y on any path

from x := y to a := b ' x.

79

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

We can use y instead of x if...

•!The only definition of x reaching a := b'x is x := y, and

• There is no assignment to y on any path

from x := y to a := b ' x.

Compute the U-D Chains and use

 that info to determine this!

80

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

We can use y instead of x if...

•!The only definition of x reaching a := b'x is x := y, and

• There is no assignment to y on any path

from x := y to a := b ' x.

Compute the U-D Chains and use

 that info to determine this!

A new Data Flow problem!

81

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Look at the entire Control Flow Graph

Identify all copy statements.

Two copy statements are different,

even if they have the same variables!

Example:
Universe = ???

S1: x := y
S2: a := b*3
S3: c := x+1

S4: a := d
S5: b := x+b
S6: x := y

S7: x := a+c
S8: z := w
S9: c := a-1

82

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Look at the entire Control Flow Graph

Identify all copy statements.

Two copy statements are different,

even if they have the same variables!

Example:
Universe = ???

S1: x := y
S2: a := b*3
S3: c := x+1

S4: a := d
S5: b := x+b
S6: x := y

S7: x := a+c
S8: z := w
S9: c := a-1

83

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Look at the entire Control Flow Graph

Identify all copy statements.

Two copy statements are different,

even if they have the same variables!

Example:
Universe = { S1: x := y

S4: a := d

S6: x := y

S8: z := w }

S1: x := y
S2: a := b*3
S3: c := x+1

S4: a := d
S5: b := x+b
S6: x := y

S7: x := a+c
S8: z := w
S9: c := a-1

84

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

S2: x := a - 5

A block “kills” a copy

x := y

if it contains an assignment to x or y...

S1: x := y
B1

B2

S3: a := x * e
B3

••• y?

S5: y := c + 7

S4: x := y
B4

B5

S6: a := x * e
B6

••• y?

B2 Kills S1 B5 Kills S4

••• •••

85

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

S2: x := a - 5

A block “kills” a copy

x := y

if it contains an assignment to x or y...

S1: x := y
B1

B2

S3: a := x * e
B3

••• y?

S5: y := c + 7

S4: x := y
B4

B5

S6: a := x * e
B6

••• y?

B2 Kills S1 B5 Kills S4

... unless the block contains the copy itself and does not

 assign to x or y after the copy.

••• •••

86

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

For each basic block, we first compute...

C_GEN [B]
The set of all copy statements in basic block B,

not killed before they reach the end of the block.

C_KILL [B]

The set of all copies in U that are killed by block B.

87

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Then, Use Data Flow to Compute...

C_IN [B]
The set of all copy statements x := y such that

every path from the initial block to the beginning of B

contains the copy and there are no assignments

to x or y on any path from the copy statement

to the beginning of block B.

[Technically, there must be no assignments on the path

between the last occurrence of the copy and the beginning

of block B.]

C_OUT [B]
Same, at the end of the block.

88

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

The Data Flow Equations

C_OUT[B] := C_GEN[B] ! (C_IN[B] - C_KILL[B])

C_IN[B] := C_OUT[P]

 P is a predecessor of B

C_IN[B1] = {}

For B % B1
 (the initial block)

Nothing available before the initial block

89

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

The Data Flow Equations

C_OUT[B] := C_GEN[B] ! (C_IN[B] - C_KILL[B])

C_IN[B] := C_OUT[P]

 P is a predecessor of B

C_IN[B1] = {}

For B % B1
 (the initial block)

Nothing available before the initial block

These equations
are identical to the

Available Expression
equations!

90

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Deletion Algorithm

Input:
Control Flow Graph

U-D Chain info

D-U Chain info

Results of Data Flow Analysis; C_IN [B], for each block

Output:
Modified Flow Graph

91

CS-322 Optimization, Part 3

© Harry H. Porter, 2006

Copy Deletion Algorithm
for each copy statement C: x:=y do
 Determine the set of all uses of x
 that are reached by C.
 Call such stmts U1, U2, U3, ... UN
 for each use Ui: ... := ... x... do
 Let B be the basic block containing Ui.
 if C (C_IN[B] and there are no
 definitions of x or y prior
 to Ui within B then
 It might be okay to delete C... Keep checking other uses.
 else
 We must not delete C!
 Skip to the next copy statement
 endif
 endfor
 delete C
 modify all uses U1,U2,...UN
endfor

Ui: ... := ... x...

Ui: ... := ... y...

