
CS-322 Compiler Design

Page 1

Project 9:
Intermediate Code Generation (Part 2)

Due Date: Tuesday, February 14, 2006, Noon
Duration: One week

Overview
In this project, you will modify and add to the Generator.java file.

You will add the ability to generate IR code for:

• All boolean-valued operators, i.e.,
<, <=, >, >=, =, <>, AND, OR, NOT

• The following kinds of statements:
IF, WHILE, LOOP, FOR, RETURN, ASSIGNMENT, CALL, EXIT

Code generation for the following will be done in a later project:

• READ statement
• WRITE statement
• Array accessing
• Array constructors
• Record accessing
• Record constructors

Part of the challenge of this project is that you must generate “short-circuit” code for the boolean
operators.

Files
Start by creating a new directory for this project, called p9.

Copy all files (except the tst directory) from the last project into this new directory. In other words,
keep an intact copy of your p8 files (with Unix timestamp unmodified).

Here are the new files for this project:

The assignment PDF file (this document)

tst
Contains several new test programs, plus all test programs from the previous project. The
expected output files, even from the old test programs, are different. The call test has also
changed a little.

CS-322 Compiler Design

Page 2

runAll
Modified to include the new tests.

IR.java
Modified slightly to print out MaxLexicalLevel.

Main.jar
Modified.

Short-Circuit Operators
In PCAT, some variables can have type “boolean”; how are the values TRUE and FALSE stored?
In our compiler, we will store Booleans using a full word (i.e., 32-bits). TRUE will be represented
as 0x00000001 and FALSE will be represented as 0x00000000.

What is short-circuit evaluation? It means that the second operand of a logical operator will not be
evaluated if the resulting value can be determined after the first operand has been evaluated.

Consider the logical AND operator. If the first operand turns out to be FALSE, then there is no
need to evaluate the second operand, since the result of the AND will be FALSE in any case.
Furthermore, the language specification says that the second operand must not be evaluated in this
case.

If the first operand of the AND expression is TRUE, then the second operand must be evaluated.
Notice that, once we have found that the first operand is TRUE, the value of the entire AND
expression will be whatever the value of the second operand is.

Next consider the logical OR operator. If the first operand turns out to be TRUE, then there is no
need to evaluate the second operand, since the result of the OR will be TRUE in any case. In this
case, the second operand must not be evaluated. However if the first operand is FALSE, then the
value of the entire expression will be whatever the second operand turns out to be.

[Note that for logical XOR and logical EQUALS, short-circuit operation is impossible. Regardless
of what the first operand turns out to be, the second operand must be evaluated. Are there other
logical operators for which short-circuit evaluation can be implemented?]

As many programmers know, short-circuit operation can be useful and programmers will often
depend on it being there in the code they write. Consider this C code:

if (i >= 0 && a[i] != 999) ... ;
if (p && p.next) ... ;

You must modify genExpr (and some of the methods it calls) to generate code for all remaining
operators, handling short-circuit evaluation correctly.

To deal with relational operators and with Boolean expressions, the following IR instructions may
be used:

CS-322 Compiler Design

Page 3

IR.label label:
IR.go_to goto label

IR.gotoiEQ if arg1=arg2 then goto label (integer)
IR.gotoiNE if arg1!=arg2 then goto label (integer)
IR.gotoiLT if arg1<arg2 then goto label (integer)
IR.gotoiLE if arg1<=arg2 then goto label (integer)
IR.gotoiGT if arg1>arg2 then goto label (integer)
IR.gotoiGE if arg1>=arg2 then goto label (integer)

IR.gotofEQ if arg1=arg2 then goto label (float)
IR.gotofNE if arg1!=arg2 then goto label (float)
IR.gotofLT if arg1<arg2 then goto label (float)
IR.gotofLE if arg1<=arg2 then goto label (float)
IR.gotofGT if arg1>arg2 then goto label (float)
IR.gotofGE if arg1>=arg2 then goto label (float)

Note that we use integer comparison instructions for integer, pointer, and Boolean values and we
use float comparison instructions for comparing real values.

Constants 0, 1, and 4
There are a couple of places where you will need the integer constants 0 and 1. At the beginning of
the generateIR() you might want to create two Ast nodes of type IntegerConst and fill them in
with iValues equal to 0 and to 1. (In my own code, I called them constant0 and constant1.)
These can then be used in handling BooleanConsts and constant0 can be also used for
NilConsts as well.

By creating these constant nodes once at the beginning, right before you call genBody() for the
main body, you won’t have to mess with creating them later and you will also have only one copy
of each of these nodes, which can be shared by different parts of the AST.

In the next project, when we are generating the code for array dereferencing address calculations, we
will also need an IntegerConst with iValue equal to 4. You might as well call it constant4 and
create it when you create constant0 and constant1.

Hints for Implementing Short-Circuit Code Generation
The method genExpr() will be called to generate code for Boolean expressions. In some cases,
genExpr() must generate code to compute a value (either 0 or 1), move it into a temporary, and
return that temporary as the “place” where the value is.

For expressions such as in the following example, genExpr() will need to generate code to move
the value into some other location (e.g., “x”).

x := a<b and (c<d or e<f);

CS-322 Compiler Design

Page 4

In other cases, genExpr() must generate code to jump somewhere. The actual Boolean value is not
needed and should not be produced. In the following example, genExpr() should generate code to
jump either to the first “then” statement or to the first “else” statement.

if a<b and (c<d or e<f) then ... else ... end;

In order to get genExpr() to generate the correct sort of code, you must pass it an indication of
whether or not you need code ending with branches and, if so, where the code should branch to.
You can do this by adding 2 additional parameters to genExpr(), called trueLabel and
falseLabel.

The trueLabel and falseLabel arguments will either

(1) both be NULL, or
(2) point to Java Strings, such as “Label_23” and “Label_51”, giving branch targets.

(We should never have the situation where one of trueLabel / falseLabel is NULL and the other
is non-NULL.)

I recommend modifying the prototype for genExpr() to:

 Ast.Node genExpr (Ast.Node t, String trueLabel, String falseLabel)
 throws FatalError

Sometimes the arguments trueLabel and falseLabel will be NULL. In that case, genExpr() must
generate code to evaluate the expression into a variable and return that.

Other times, trueLabel and falseLabel will be labels (i.e., Java Strings). In that case, genExpr()
must generate code to jump to trueLabel when the expression evaluates to TRUE, and to
falseLabel otherwise. (When trueLabel and falseLabel are not NULL, the value returned from
genExpr() will be ignored. Your genExpr() can just return NULL.)

When genExpr() is generating code for a non-Boolean expression, trueLabel and falseLabel
will always be NULL. So if trueLabel and falseLabel are non-NULL, genExpr() must be
generating code for a Boolean expression. But for some Boolean expressions, trueLabel and
falseLabel will still be NULL.

You’ll also need to modify the following methods to add the trueLabel and falseLabel
parameters:

genBinaryOp()
genUnaryOp()
genFunctionCall()

If genExpr() is passed trueLabel=falseLabel=NULL, then it must generate whatever code is
necessary to compute the Boolean value (either 0 or 1) and get it into some variable. GenExpr()
will then return that variable as the “place” where the value is. This variable could be a temporary
variable created by genExpr() or it could be a “regular” variable of type Boolean.

GenExpr() may have to generate a bunch of instructions to compute the value and move it into a
new temporary variable but, if the expression happens to be a simple Boolean variable, then
genExpr() can just return this variable itself without generating any instructions.

CS-322 Compiler Design

Page 5

Regardless of how complicated the expression is and how much code is generated, if genExpr() is
passed trueLabel=falseLabel=NULL then it will return a pointer to the VarDecl or Formal node
that describes the variable containing the result.

On the other hand, if genExpr() is passed branch target labels (that is, if trueLabel and
falseLabel are not NULL), then genExpr() must generate code that will end by jumping.
GenExpr() should not return anything. (It should just return NULL.) Whichever method invoked
genExpr() will be expecting the “answer” in the form of branches and will therefore ignore any
returned value.

How should genExpr() generate code for various kinds of expressions, like IntegerConst,
FunctionCall, and BinaryOp?

Consider generating code for IntegerConst. (Since this case will be straightforward, it is probably
better to handle it directly within genExpr, instead of creating a “genIntegerConst” method.) If
the expression is an integer constant, genExpr will never be passed trueLabel and falseLabel
since it is not a Boolean, so you don’t even need to test them against NULL. For the IntegerConst
node, you should create a temp, generate code to move the constant into that temp, and then return
the temp (or more specifically, return a ptr to the VarDecl for that temp).

Next consider genFunctionCall(). First, it will generate the code to call the function. But then it
must check to see if trueLabel and falseLabel are not NULL. (After all, the called function might
return a Boolean and you might need to generate branches.) If you have trueLabel and
falseLabel, then genFunctionCall() must generate instructions to test the returned value and
branch accordingly. Otherwise it will put the return value in a temporary and return that.

Next consider genBinaryOp(). You may be tempted to immediately call genExpr() twice to deal
with the sub-expressions before switching on the op field. Don’t! You should switch on the op
field first. Then, you can recursively invoke genExpr in each case, as appropriate for that case.

For the arithmetic operators (like ‘+’), you can call genExpr() twice on the sub-expressions,
passing NULL trueLabel and falseLabel down.

For an operator like OR or AND, you must first test to see if you have a trueLabel and
falseLabel.

If you do have branch labels, then generating the code is fairly short. You’ll have to call
genExpr() twice, once for each of the arguments. Furthermore, you’ll need to pass the branch
labels down into the recursive invocations in a slightly different order to achieve the short-circuit
behavior.

On the other hand, if you don’t have labels for AND or OR, it means genExpr is required to place
a 0 or 1 into a variable and return it. You’ll still need to call genExpr recursively to deal with the
two operand sub-expressions but, since the sub-expressions could involve other Boolean operators
and since short-circuit evaluation is required for the sub-expressions, things get a little tricky.

Let’s imagine that genExpr() is called on an OR expression and that trueLabel and falseLabel
are NULL. I recommend that you first create a temporary and two new labels. Next, call
genExpr() once on the same expression (i.e., on the very same OR expression that you are in the
middle of trying to generate code for). [Fortunately, genExpr() will generate the right code, since
the labels will be present in the recursive call, the OR will be handled by the code described two
paragraphs earlier!] After this recursive call to genExpr(), you can then generate several IR
instructions to move 0 and to move 1 into the temp, using the labels and gotos. Finally genExpr()
will return the temp. Neat, huh?

CS-322 Compiler Design

Page 6

In the case of the relational operators (like <), begin by calling genExpr() twice to generate code
for the sub-expressions. (For the sub-expressions, you should not pass any branch labels down.
After all, the sub-expressions are integers or reals, so short-circuit evaluation for them is not even
possible.) Then, test to see whether you have branch targets (i.e., test if trueLabel and falseLabel
are non-null) and generate code differently in each case.

Main Entry and Exit
The first IR instruction generated for the “main” body should be a mainEntry instruction.
Following the last instruction of the main body, the mainExit instruction should be generated.
From these, we will ultimately generate something like:

mainEntry...
.global main

main: save %sp,-???,%sp ! set up main frame

mainExit...
mov 1,%g1 ! exit request
ta 0 ! trap to system

When we generate the save instruction, we will need to know the frameSize of the main body. (In
the next project, we will compute this number and store it in the Body node.) The mainEntry
instruction has a parameter which points to the Body node so that we can follow it later when we
generate the SPARC instructions.

When printIR prints the mainEntry instruction, it will also go to the Body node and print the
value of frameSize. You will not set the frameSize until a later project, so it will print as just zero.

[The Main.jar black box program will also print the frameSize as zero, even though the black box
program contains the code generation methods for later proijects; I’ve commented out the
frameSize computations in the version of the black box you’ll be using for this project.]

The mainExit instruction has no parameters.

Code for Procedures
To generate the code for a procedure, you will need to generate a procEntry instruction, followed
by several formal instructions. For example, for the source code:

procedure foo (x, y, z: real) : real is
 begin
 ...
 return b;
 end;

you must generate the following IR instructions:

CS-322 Compiler Design

Page 7

! PROCEDURE...
procEntry foo,lexLevel=1,frameSize=0
formal 1,x
formal 2,y
formal 3,z

...
! RETURN...

returnExpr b

The procEntry IR instruction has one operand which you should set to point to the ProcDecl node
of the procedure. When this instruction is printed, printIR will go to the ProcDecl node and print
the value of lexLevel. PrintIR will also go to the Body node and print the value of frameSize.
[LexLevel was set by the Checker. FrameSize will be zero for this project and will be set in a
later project.]

Whenever you encounter a RETURN statement, you should generate a “return” instruction.
Actually, there are two IR return instructions, returnExpr and returnVoid, depending on whether
we are returning a value from a function or simply returning from a procedure. In the case of
returnExpr, there is a single operand which should be set to point to a variable containing the value
to be returned. This variable (which is usually a temporary) will have been returned from a call to
genExpr().

In the source file, a procedure may occur between the variable initializations and the statements in a
body. Obviously, we need to generate the IR code for a procedure somewhere else besides right in
the middle of the IR instructions for its enclosing procedure. Assume that procedures foo1, foo2,
and foo3 were defined (i.e., directly nested) within procedure bar. The IR code for procedures
foo1, foo2, and foo3 should therefore be generated directly after the IR code for the statements for
the body of bar.

Loops and Exits
In PCAT, a WHILE, FOR, or LOOP statement may include an EXIT statement anywhere in its
body. When you generate the code for the EXIT statement, you’ll need to generate a goto
instruction to the point just after the looping statement. You’ll need to generate a label—the “exit
label”—directly after each looping statement to serve as the target of any EXIT branches that
appear in the looping statement. This is the label that any EXIT statements in the loop will branch
to.

To accommodate this, a field called exitLabel has been added to the WhileStmt, ForStmt, and
LoopStmt nodes. When you generate code for a WhileStmt, ForStmt, or LoopStmt, you can
simply store the exit label here.

Fortunately we have already linked each ExitStmt node to the loop it is exiting from. The
myLoop field in the ExitStmt has already been set (during type-checking) to point to either a
WhileStmt, ForStmt, or LoopStmt. So to generate code for an ExitStmt, you can easily figure
out the label to put into the goto instruction.

CS-322 Compiler Design

Page 8

New Global Variables
In project 5 or 6 (when we wrote Checker.java and we used openScope and closeScope), we
talked about the lexical level. There was a static variable (called level) which was incremented by
openScope and decremented by closeScope.

In this project, you will need to re-compute the lexical level as you walk the AST, but this should be
straightforward. I have included a field called lexicalLev in Generator0.java for this purpose.

Here are the fields I included in the starter file:

 int lexicalLev = 0;
 int maxLexicalLevel = 0;
 Ast.Body currentBody;
 Ast.StringConst stringList = null;
 Ast.RealConst floatList = null;
 int nextLabelNumber = 1;
 int nextTempNumber = 1;

You must update the values of lexicalLev, maxLexicalLevel,

You should already be modifying currentBody in the last project.

The variables stringList and floatList are for the next project; don’t worry about them now. The
variables nextLabelNumber and nextTempNumber are used in the newLabel and newTemp
methods; you should not need to do anything concerning them either.

The variable lexicalLev is initialized to 0. Every time you enter a new ProcDecl, you should
increment it and, when you finish generating the code for a ProcDecl, you should decrement it.

Note that you can test whether lexicalLev = 0 within any Body to see whether this is the “main”
body or not. You should generate the mainEntry and mainExit instruction within the
genBody() method, and not within generateIR(). Why?

You must set maxLexicalLevel to the maximum degree of procedure nesting in the program. So
every time you increment lexicalLev, simply check to see if this is a new maximum and update
maxLexicalLevel if so. [We’ll need to know the maximum degree of procedure nesting when we
use “display registers,” which will be discussed later.]

Grading
The primary consideration for grading will be correctness. The output of your program will be
compared to the output produced by the “black box” program, Main.jar. Your output should
match exactly.

Your code should also be well organized and clearly documented.

Be sure to follow my style guidelines for commenting and indenting your Java code. There is a
link on the class web page called “Coding Style for Java Programs.” Please read this document.
Also look at the Java code I am distributing for examples of the style we are using in this class.

CS-322 Compiler Design

Page 9

During testing, the grader will compile your Generator.java file and link it with my files, including
my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class.

[IF YOU DIDN’T TAKE CS-321 LAST TERM, IGNORE THE NEXT PARAGRAPH...]

I encourage you to use your own files during testing, but I also strongly encourage you to test your
Generator.java with my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class, just to
make sure it works correctly with them. While there should be no difference, it still seems like a
good idea.

Standard Boilerplate...
It is considered cheating to decompile or look inside any .class or .jar file I provide. If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 9 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements.

Do not submit multiple times.

Please keep an unmodified copy of your file on the PSU Solaris system with the timestamp intact.
This is required, in case there are any “issues” that arise after the due date.

In other words: DO NOT MODIFY YOUR “Generator.java” FILE AFTER YOU SUBMIT
IT. You can create a p10 directory, copy all files over and keeping working, if you need to.

Work independently: you must write this program by yourself.

