
Page 1

The Abstract Syntax Tree
Differences Between Tolmach's and Porter's Representations

Harry Porter
January 21, 2006

Introduction
This document discusses the Abstract Syntax Tree (AST) representation used by Andrew Tolmach and
that used by Harry Porter.

Class Names
There is a rough correspondence between class names used in by Tolmach and by Porter. Some of the
classes in Tolmach (e.g., Decs) have no analog in Porter. Some of the classes in Porter (e.g.,
NamedType) have no analog in Tolmach.

In the following lists, indentation shows the subclass relationship.

Tolmach Porter
Node Node

Program
Body Body
Decs

VarDecs
TypeDecs
ProcDecs

Dec
VarDec VarDecl
TypeDec TypeDecl
ProcDec ProcDecl
FormalParam Formal
ConstDec

Page 2

Type
CompoundType

ArrayType ArrayType
RecordType RecordType
BuiltinType

TypeName
Component FieldDecl
St Stmt

AssignSt AssignStmt
CallSt CallStmt
ReadSt ReadStmt
WriteSt WriteStmt
IfSt IfStmt
WhileSt WhileStmt
LoopSt LoopStmt
ForSt ForStmt
ExitSt ExitStmt
ReturnSt ReturnStmt
SequenceSt

ReadArg
Exp Expr

BinOpExp BinaryOp
UnOpExp UnaryOp
LValueExp ValueOf
CallExp FunctionCall
ArrayExp ArrayConstructor
RecordExp RecordConstructor
IntLitExp IntegerConst
RealLitExp RealConst
StringLitExp StringConst

BooleanConst
NilConst
IntToReal

Argument
ArrayInit ArrayValue
RecordInit FieldInit
Lvalue LValue

VarLvalue Variable
ArrayDerefLvalue ArrayDeref
RecordDerefLvalue RecordDeref

Page 3

Differences in Field Names
Many of the fields have different names in Tolmach and in Porter. The following chart gives a rough
correspondence. For Porter, the type of the field is also given. Fields marked *** contain semantic
information that was added to the AST during type-checking. The class IntToReal is also added during
type-checking.

The other fields capture the same syntactic information as in Tolmach’s AST (except for minor syntactic
differences in the languages).

Tolmach Porter
Node Node

line lineNumber: int
newline (const)

Program
body

Body Body
decsList

typeDecls: TypeDecl
procDecls: ProcDecl
varDecls: VarDecl

statement stmts: Stmt
Dec
VarDecs

vardeclist
TypeDecs

typedeclist
ProcDecs

procdeclist
Dec

name
VarDec VarDecl

id: String
type typeName: TypeName
initializer expr: Expr

next: VarDecl
lexLevel: int ***

TypeDec TypeDecl
id: String

defn compoundType: CompoundType
next: TypeDecl

Page 4

ProcDec ProcDecl
id: String

resultType retype: TypeName
formals formals: Formal
body body: Body

next: ProcDecl
lexLevel: int ***

FormalParam Formal
id: String

type typeName: TypeName
next: Formal
lexLevel: int ***

TypeName
id: String
myDef: CompoundType ***

ConstDec
type

Type CompoundType
ArrayType ArrayType

elementType elementType: Type
RecordType RecordType

components fieldDecls: FieldDecl
BuiltinType
Component FieldDecl

name id: String
type typeName: TypeName

next: FieldDecl
St Stmt

next: Stmt
AssignSt AssignStmt

lhs lValue: LValue
rhs expr: Expr

CallSt CallStmt
procName id: String
args args: Argument

myDef: ProcDecl ***
ReadSt ReadStmt

targets readArgs: ReadArg
WriteSt WriteStmt

exps args: Arguments

Page 5

IfSt IfStmt
test expr: Expr
ifTrue thenStmts: Stmt
ifFalse elseStmts: Stmt

WhileSt WhileStmt
test expr: Expr
body stmts: Stmt

LoopSt LoopStmt
body stmts: Stmt

ForSt ForStmt
loopVar: String lValue: LValue (note difference in type)
start expr1: Expr
stop expr2: Expr
step expr2: Expr
body stmts: Stmt

ExitSt ExitStmt
myLoop: Stmt ***

ReturnSt ReturnStmt
returnValue expr: Expr

myProc: ProcDecl
SequenceSt

statements
Exp Expr
BinaryOpExp BinaryOp

binOp op: int
left expr1: Expr
right expr2: Expr
binOpName (const)

mode: int ***
UnOpExp UnaryOp

unOp op: int
operand expr: Expr
unOpName (const)

mode: int ***
IntToReal ***

expr: Expr
LvalueExp ValueOf

lval lValue: LValue
CallExp FunctionCall

procName id: String
args args: Argument

myDef: ProcDecl ***
Argument

expr: Expr
mode: int ***
next: Argument

Page 6

ArrayExp ArrayConstructor
typeName id: String
initializers values: ArrayValues

myDef: TypeDecl ***
ArrayInit ArrayValue

count countExpr: Expr
value valueExpr: Expr

next: ArrayValue
RecordExp RecordConstructor

typeName id: String
initializers values: FieldInits

myDef:TypeDecl ***
RecordInit FieldInit

name id: String
value expr: Expr

myFieldDecl: FieldDecl ***
next: FieldInit

IntLitExp IntegerConst
lit iValue: int

RealLitExp RealConst
lit rValue: double

StringLitExp StringConst
lit sValue: String

BooleanConst
iValue: int

NilConst
Lvalue LValue
VarLvalue Variable

name id: String
myDef: Node (either VarDecl or Formal) ***
currentLevel: int ***

ArrayDerefLvalue ArrayDeref
array lValue: LValue
index expr: Expr

RecordDerefLvalue RecordDeref
record lVlaue: LValue
name id: String

myFieldDecl: FieldDecl ***

Page 7

Lists vs. Arrays
In PCAT, there are a number of syntactic constructs that repeat. For example, following the ELSE
keyword, there can be zero or more statements. As another example, there can be zero or more formal
parameters in a procedure declaration.

Tolmach represents sequences with arrays. For example:

 public static class ProcDec extends Dec {
 ...
 FormalParam[] formals;
 ...
 }

Porter represents sequences with linked lists. For example:

 static class ProcDecl extends Node {
 ...
 Formal formals;
 ...
 }
 static class Formal extends Node {
 ...
 Formal next;
 }

Tolmach might use code like this to go through a list of formals:

 for (int i = 0; i < formals.length; i++) {
 ... formals[i] ...
 }

Porter might use code like this:

 for (Formal f = formals; f = f.next; f) {
 ... f ...
 }

Page 8

Tolmach uses arrays for the following fields:

 Body . decsList
VarDecs . vardeclist
TypeDecs . typedeclist
ProcDecs . procdeclist,
ProcDec . formals
RecordType . components
CallStmt . args
ReadSt . targets,
WriteSt . exps
SequenceSt . statements
CallExp . args
ArrayExp . initializers,
RecordExp . initializers

Porter uses linked lists for sequences of...

VarDecl (see comments on declaration grouping)
TypeDecl
ProcDecl
Formal (like ProcDecl.formals)
FieldDecl (like (RecordType.components)
Stmt (see comments on statement sequences)
ReadArg (like ReadSt.targets)
Argument (like WriteSt.exps, CallSt.args, and CallExp.args)
ArrayValue (like ArrayExp.initializers)
FieldInit (like RecordExp.initializers)

Statement Sequencing
In a number of places in the PCAT syntax, there can be zero-or-more statements. For example, a
“while” loop can contain zero-or-more statements in its body and an “if” statement can have zero or
more statements in its “then” part or its “else” part.

Tolmach uses a special kind of statement called SequenceSt, which contains a single field. This field,
called statements, is an array of St nodes.

Page 9

Tolmach

 public abstract static class St extends Node {
 ... (no fields)...
 }
 public static class WhileSt extends St {
 ...
 St body;
 ...
 }
 public static class SequenceSt extends St {
 ...
 St[] statements;
 ...
 }

Porter has no class corresponding to SequenceSt. Instead, every statement node has a next field. Thus,
statements are always part of linked lists.

Porter

 abstract static class Stmt extends Node {
 Stmt next;
 }
 static class WhileStmt extends Stmt {
 ...
 Stmt stmts;
 ...
 }

In Porter’s AST, whenever a field points to a linked list of nodes, the name of the field is pluralized. In
this example, the field stmts ends with an “s” indicating that it points to a linked list of Stmt nodes.

Porter’s “Checker” Class
Porter’s type checker is written as a separate class, called Checker. There is one instance of this class
and this class contains a lot of routines, with names such as:

checkIfStmt
checkBinaryOp
 etc...

Tolmach has a method called check in each of the AST classes.

Page 10

Porter’s AST nodes are entirely data; the AST classes contain no methods.

In the main method, the code creates a Checker object and then invokes the checkAst method on it.
The main method looks roughly like this:

Ast.Body ast;
Parser parser;
Checker checker;
...
// Parse the source and return the AST.
parser = new Parser (args);
ast = parser.parseProgram ();

// Check the AST.
checker = new Checker ();
checker.checkAst (ast);

Types
In Porter, the following basic, predefined types were used during type checking:

integer
real
boolean
_string
_nilType

(_string is the name of the type of string constants. Since string constants can only be used in Write
statements and since variables can never contain string values, there is no “string” keyword in the PCAT
language. The underscore in the type’s name is completely internal to the compiler. Likewise,
_nilType is the type of the “nil” constant and does not correspond to a PCAT keyword.)

Each of the basic types is represented with a TypeName node, with the id field equal to one of the
above strings. The TypeName nodes are also used for user-defined types, as in:

type MyType is array of ...;

Each TypeName node has an id field and a myDef field. The myDef field will point to either an
ArrayType node or a RecordType node. For the TypeName nodes for the basic types, the myDef
field will be null.

In both Tolmach and Porter, each type has a unique name. A type can be represented by its name (a
String) and type equality was checked in CS-321 by simply comparing strings. Recall that PCAT uses
“name equality” and not “structural equality.”

Page 11

Everything concerning types should be unimportant during code generation, since all type information
will be ignored. A new field called mode exists in those nodes where it will be needed during code
generation. The mode field was filled in during type checking, and any decisions to be made during
code generation will make use of a node’s mode.

The Abstract Class “Dec”
In PCAT, each “body” will have zero-or-more variable declarations, zero-or-more type declarations, and
zero-or-more procedure declarations. Each declaration has name (i.e., an identifier) and some other
information (the definition).

In each declaration, Tolmach has a field called name. Porter calls this id, but it contains the same
information, namely the string name being defined.

Tolmach uses the classes VarDec, TypeDec, and ProcDec to represent declarations.

Tolmach has an abstract superclass of VarDec, TypeDec, and ProcDec called Dec, which factors out
the String field called name. In other words, all declaration nodes have a field called name, and this is
defined in the abstract superclass Dec, instead of being defined once in each of the classes VarDec,
TypeDec, and ProcDec.

Porter also has three classes, which have similar names: VarDecl, TypeDecl, and ProcDecl. However,
Porter does not have a class corresponding to Tolmach’s Dec. Instead, each of the “decl” classes
contains the String field directly. In the case of Porter, the String field is called id, but it contains the
same information as Tolmach’s name field.

Note that any object representing (say) a variable declaration object will look the same, whether it is
represented in Tolmach’s AST or in Porter’s AST. In particular, the object will contain a String field
regardless of whether the field was defined in the abstract class or was defined directly in the VarDecl
class.

Page 12

Declaration Grouping
Consider these PCAT programs:

Program #1:
 var x, y, z: int := 0;
 var a, b, c: int := 2;

Program #2:
 var x, y, z: int := 0;
 a, b, c: int := 2;

They are semantically identical. Tolmach’s representation will capture the difference, but Porter will
represent both programs with the same AST. Porter will also represent these programs the same as the
following:

Program #3:
 var x: int := 0;
 y: int := x;
 z: int := x;
 a: int := 2;
 b: int := a;
 c: int := a;

A similar effect happens with type definitions and procedure definitions. In the case of recursively
defined types and recursively defined procedures, there is also a semantic difference in the PCAT
language itself, as discussed in the PCAT Delta document, but this doesn’t concern us here.

Tolmach’s Body node contains a pointer to an array of Decs. There are three subclasses of Decs, called
VarDecs, TypeDecs, and ProcDecs. Each of these classes contains an array. For example, VarDecs
contains an array of VarDec nodes. Thus, Tolmach has an array of arrays of VarDec nodes. In
program #1, the top-level array points to two sub-arrays and the each sub-array has 3 elements. In the
program #2, the top level array points to a single sub-array, which has 6 elements.

Porter’s Body node contains pointers to 3 linked lists: one for all VarDecl nodes, one for all TypeDecl
nodes, and one for all ProcDecl nodes. Thus, Porter will have one linked lists of VarDecl nodes and
there will be 6 elements in the list.

Thus, Tolmach retains the original “grouping” information, while Porter looses this information during
parsing.

Page 13

Altering the AST During Type-Checking
Porter alters the AST during type checking, while it appears that Tolmach’s AST is not modified during
type-checking.

The nature of these modifications is purely additive: new fields are filled in, but for the most part, the
old fields remain unchanged. Thus, the AST is only augmented with new information about the
program. Information from the parse is not lost or changed.

For example, when the type checker determines the type of an addition operator (either INTEGER or
REAL), this information is stored in the BinaryOp node, in a field called mode. This information will
come in handy later, during code generation.

Here are the fields that are filled in during type-checking:

Class New field Type of field
 TypeName myDef CompoundType

ExitStmt myLoop Stmt (ForStmt, LoopStmt, or WhileStmt)
ReturnStmt myProc ProcDecl
CallStmt myDef ProcDecl
FunctionCall myDef ProcDecl
ReadArg mode int
Argument mode int
 (For WriteStmt: REAL_MODE, INTEGER_MODE, or BOOLEAN_MODE, or STRING_MODE
 For CallStmt and FunctionCall: ignore; it will be set to zero.)
ArrayConstructor myDef TypeDecl (a NamedType)
RecordConstructor myDef TypeDecl (a NamedType)
FieldInit myFieldDecl FieldDecl
Variable myDef Node (VarDecl or Formal)
RecordDeref myFieldDecl FieldDecl
BinaryOp mode int (INTEGER_MODE or REAL_MODE; never 0)
UnaryOp mode int (INTEGER_MODE or REAL_MODE; never 0)

The “IntToReal” Node
In Porter, there is a node called IntToReal, which inserted into the AST during type-checking in exactly
those places where a data conversion will be necessary.

 static class IntToReal extends Expr {
 Expr expr;
 }

Page 14

The IntToReal class contains a single field. This node simply serves as a placeholder within an
expression to indicate to the code generator where code must be insert to convert an integer value into a
floating point value.

This is the only case where the AST is changed from what was produced by the parser. The AST still
has pretty much the same shape, however, since all the type-checker does it to insert a node. In all other
cases, the type-checker fills in new fields, rather than altering existing fields.

Misc. Differences
Tolmach uses a Program node; for Porter the entire program is a Body. Porter does not have anything
corresponding to Tolmach’s Program class.

TRUE, FALSE, and NIL
The constants TRUE, FALSE, and NIL are represented as VarLvalue nodes in Tolmach. There is a
ConstDec node which is used to define names like TRUE, FALSE, and NIL, so they can be looked up
in the Env.

In Porter, these constants are recognized during parsing and treated specially. Instead of creating a
Variable node, the constants true, false, and nil are represented with BooleanConst and NilConst
nodes. The BooleanConst node has a single field that tells whether it is true (1) or false (0).

 static class BooleanConst extends Expr {
 int iValue;
 }
 static class NilConst extends Expr {
 }

The “myDef” Field
In Porter’s type-checker, additional information is learned about the PCAT program and some of this
information is added to the AST. This information will make generating IR code significantly easier.

Consider a variable in a PCAT program, such as x. The variable will be declared and, in fact, there may
be several definitions of variable x, each in a different procedure. Each declaration defines a different
variable which will be stored in a different memory location.

Page 15

Now consider a use of variable x. Which variable does it refer to? The question is really which
“declaration” of x does some particular “use” refer to? Each “use” of a variable is represented with a
Variable node in Porter (and a VarLvalue in Tolmach). Each “declaration” of a variable is represented
with a VarDecl or Formal node in Porter (and a VarDecl or FormalParam node in Tolmach).

During code generation, we will need to store information about variable x. For example, we will need
to decide how many bytes we’ll use for it and where in memory to put it. We will store this information
directly in the VarDecl (or Formal) node in the AST. (Later, we’ll add more fields to these nodes to
hold this information.)

When we are generating code, we will encounter “uses” of x from time to time. When we do, we’ll
have a Variable node in hand, although we’ll need the information from the VarDecl or Formal node.
How do we get from the Variable node to the corresponding VarDecl or Formal node?

Fortunately, during type-checking we saved this link at the time we checked whether each variable was
properly declared and used. This is the myDef field in the Variable node, which was filled in during
type-checking. The myDef field in a Variable node points to either a VarDecl or a Formal node. So,
during code generation, we can simply follow the myDef link to find out all we need to generate code
for a “use” of x.

Other Information Added During Type-Checking
In PCAT, a procedure is invoked in either a call statement or a function call in an expression. In Porter,
these are represented with CallStmt and FunctionCall nodes. During type-checking in Porter, a link
was saved between the call and the procedure in question. The link is stored in the myDef field in the
CallStmt node and in the FunctionCall node. The myDef field will point to a ProcDecl node.

During code-generation, we will save information about the procedure (such as where in memory its
assembly code is stored) in the ProcDecl node. When we generate code for the CallStmt or the
FunctionCall, we’ll be able to get to this information by following the myDef field.

In Porter, there are also other links stored in the AST during type-checking.

In the ArrayConstructor node, there is a myDef field, but this will not be used during code generation.

In the RecordConstructor node, there is a myDef field, which will come in handy during code
generation.

In VarDecl and Formal there is a field named lexLevel. This is an integer telling the lexical level at
which the variable was declared.

In the Variable node there is a field named currentLevel. This is an integer telling the lexical level at
which the variable was used.

Page 16

In the ProcDecl node there is a field named lexLevel. This is an integer telling the lexical level at
which the procedure was declared / defined.

In the ExitStmt node there is a field named myLoop. This points to either a WhileStmt, LoopStmt, or
ForStmt. This field associates the EXIT statement with the loop it exits from.

In the BinaryOp and UnaryOp nodes there is a field named mode. This is an integer field which is
significant for some operators. For example, the addition operator (+) and the unary minus operator (-)
can be applied to either integers or reals. The value of this field will be either INTEGER_MODE or
REAL_MODE.

In the Argument node there is a field named mode. Linked lists of Argument nodes are pointed to by
CallStmt and FunctionCall nodes to represent the list of arguments in a procedure invocation. For
arguments to a procedure invocation, the mode field is not used and will be set to zero. Each
WriteStmt node will also point to a linked list of Argument nodes, representing the list of expressions
to be printed. For these, the mode will be either I N T E G E R _ M O D E , R E A L _ M O D E,
BOOLEAN_MODE, or STRING_MODE. During code generation, we will have to generate different
code to print integers than the code to print reals. Strings and booleans will also be printed with
different code. The mode field will help us out in knowing what type of arguments we have.

In the RecordDeref node there is a field named myFieldDecl. During type-checking, this field is set to
point to the corresponding FieldDecl node.

In the FieldInit node there is a field named myFieldDecl. During type-checking, this field is set to
point to the corresponding FieldDecl node.

Dealing with Errors
Tolmach’s code throws CheckError when the compiler detects a semantic error. Porter’s code calls a
method named semanticError and then resumes checking.

Porter provides an exception called LogicError, which should be thrown if the compiler encounters an
unexpected internal program logic error, indicating a bug. LogicError is a subclass of an exception
called FatalError. Here is an example of its use:

if (...)
 ...
} else {
 throw new LogicError ("Unknown class within checkExpr");
}

Page 17

Walking the Tree
The type-checker walks the AST looking for semantic errors. The code generator will also need to walk
the AST generating intermediate code (“IR” code). The code to walk the tree works differently in
Tolmach and Porter.

In Tolmach’s approach, each Node defines a method named check. Thus, there are many methods with
the same name, one in each of the AST classes. To walk the tree, the main code will invoke the check
method on the root node. This method will (recursively) invoke the check method on its children.
Which particular check method will get executed will depend on the class of the node it is invoked on.

For example, here is the check method in class WriteSt:

 void check(String expectedReturnType, int level, Env env)
 throws CheckError {
 for (int i = 0; i < exps.length; i++) {

 String t = exps[i].check(env);
 if (...)
 throw new CheckError(line,"...");

 }
 }

In Porter, there are many “check” methods, each with a slightly different name. For example, there are
methods called checkWriteStmt, checkExpr, checkBody, etc. All these methods are members of the
Checker class, not the AST classes.

For example, here is the checkWriteStmt method:

 void checkWriteStmt (Ast.WriteStmt t)
 throws FatalError
 {
 Ast.Argument arg = t.args;
 while (arg != null) {
 Ast.Type argType = checkExpr (arg.expr);
 if (...) {
 semanticError (arg, "...");
 }
 arg = arg.next;
 }

 }

In Tolmach, a sequence of statements is represented with an array of St objects, in the SequenceSt node.
Here is the check method for SequenceSt:

Page 18

 void check(String expectedReturnType, int level, Env env)
 throws CheckError {
 for (int i = 0; i < statements.length; i++)
 statements[i].check(expectedReturnType, level,env);
 }

In Porter, there is nothing corresponding to SequenceSt; instead each statement node contains a next
pointer. Here is Porter’s checkStmts method:

 void checkStmts (Ast.Stmt stmt)
 throws FatalError
 {
 while (stmt != null) {
 if (stmt instanceof Ast.AssignStmt) {
 checkAssignStmt ((Ast.AssignStmt) stmt);
 } else if (stmt instanceof Ast.CallStmt) {
 checkCallStmt ((Ast.CallStmt) stmt);
 } else if (stmt instanceof Ast.WriteStmt) {
 checkWriteStmt ((Ast.WriteStmt) stmt);
 ...
 } else {
 throw new LogicError ("Unknown class in checkStmts");
 }
 stmt = stmt.next;
 }
 }

In both Tolmach and Porter, a sequence of statements can contain any sort of statement and, during
type-checking, each individual statement node in a sequence must somehow be examined to determine
what sort of statement it represents and which method to use to type-check the statement.

In Porter, the testing is done directly by the programmer in the code. In Tolmach, the test is done by the
Java runtime system. When the check method is invoked in Tolmach, object-oriented method
dispatching occurs and the runtime system will use the class of the node to determine which method to
invoke.

The object-oriented approach used by Tolmach is faster. The explicit dispatch used by Porter may be
easier for some people to follow.

It is difficult to say for sure which design decision is superior. Even with extensive timing studies, it
may still boil down to personal preference. These are the sorts of design decisions which make
engineering so interesting, since making the best choice requires analysis, experience, intuition, and a
even a sense of aesthetics.

Of course the first step is learning which design choices exist.

