
Date Printed: 1/26/06 Page 1

A Review of the Abstract Syntax Tree
How a PCAT Program is Represented

Harry H. Porter III
January 21, 2006

Introduction
This document discusses the Abstract Syntax Tree (AST) representation. It can serve as a refresher for
students who took CS-321 from me or an introduction for students who took CS-321 elsewhere.

It is assumed that you have already read the PCAT language specification and are familiar with the
language. If you have not used PCAT in CS-321, then you should also look at some example programs.
There are other documents written specifically for students who have taken CS-321 from Andrew
Tolmach, which may be good for these students.

You know what a parse tree is. A parse tree exactly captures the PCAT source program and represents it
exactly as specified in the grammar. There is a one-to-one correspondence between the grammar and
the parse tree. More precisely, each interior node in the parse tree is labeled with a non-terminal symbol
from the grammar and each leaf node is labeled with a terminal symbol (i.e., a token) from the grammar.
From a parse tree, it would be possible to recreate the original source input, except that the spacing of
tokens is lost and the comments (which were eliminated by the lexer) were lost.

Often, there are rules in the grammar that are there for “syntactic” reasons. For example, the grammar
rules may be written to enforce a certain associativity or precedence in the operators, or the grammar
rules may have been manipulated to make it possible to use a certain parsing algorithm.

Unfortunately, the shape of the parse tree is exactly determined by the grammar rules and is not always
the best for use in later stages of the compiler. The parse tree will often have too much information and
unnecessary nodes.

On the other hand, an “abstract syntax tree” represents the source PCAT program in a more efficient
way, in a way that will make code generation easier. So, in CS-321 we built an AST (“abstract syntax
tree”), not a parse tree. The AST is similar to a parse tree and captures more-or-less the same
information. The AST contains some simplifications that make it impossible to recover the original
source PCAT program exactly. However, it captures all that is semantically necessary.

Date Printed: 1/26/06 Page 2

Trees, DAGs, and Directed Graphs
Formally, in a “tree” each node (except the root) has a single parent. In other words, each node is
pointed to by exactly one node (its parent) and there are no cycles. Every node is either an interior node
or a leaf.

Walking (or “traversing”) a tree is straightforward, using a recursive routine. As part of visiting a node,
this routine will visit each of the children recursively. You can use such a recursive routine to print the
tree. If there are different sorts of nodes in the tree, you might have a different routine for each type of
node, but these routines will call each other. They are “mutually” recursive.

A “directed, acyclic graph” (or DAG) is like a tree except that a node may have more than one parent.
In a DAG there are still no cycles, but now we have the possibility that some child is shared by several
parents: more than one node may point to a given node, but there is still a concept of direction. “Down”
is from parent to child, following pointers. “Up” is from child to parent, following the edges backward.

If you naïvely use the same recursive method to print a DAG it will work... more-or-less. However, a
child which is shared by several parents will be printed several times, but since there are no cycles, there
will not be any infinite looping.

A “directed graph” is similar to a tree and a DAG, except there is no notion of “up” or “down”.
Although some node might be distinguished as a “root”, or entry into the graph, there may be cycles.
Walking a graph with cycles can be tricky; you don’t want to get caught in a cycle and keep recursing
infinitiely.

Adding Semantic Information
The AST is initially produced during parsing and contains only grammatical, syntactic information.
During type-checking in CS-321, our compiler gathered additional information about the program. This
information was stored in the AST for use this term during code generation. We will first discuss the
main fields of the AST, which were filled in during parsing. We can call these the “syntactic fields”.

Then we will discuss several more fields that were added to the AST and filled in during type-checking.
We can call these additional fields the “semantic fields”. Many of the semantic fields contain pointers to
other nodes in the AST. When we consider all the fields in an AST it is no longer a tree; the AST is a
directed graph. Following tradition, we continue to call it a “abstract syntax TREE”, although it is not
technically a tree.

When the AST was first created by the parser, it was a tree. It was easy to traverse and print. In fact,
there is a program available to you, called PrettyPrint.java, which walks the AST and prints it. This
code looks only at the syntactic fields. The PrettyPrint code prints the AST in a format that is very
similar to the original PCAT source. This makes it fairly easy to check the syntactic fields and see

Date Printed: 1/26/06 Page 3

exactly what your AST looks like. The PrettyPrint code also has some hooks in it to allow you to print
selected semantic fields in such a way that cycles do not cause infinite output.

The AST Classes
In a textbook tree or directed graph there is only one sort of node, which can accommodate zero or more
outgoing edges.

In our AST, we have many different kinds of node. For example, to represent an “if” statement, we will
use an IfStmt node. To represent a variable declaration, we’ll use a VarDecl node. For each type of
node, we have a class. There is a class called IfStmt and a class called VarDecl. All these classes are
included in the file called Ast.java, which you should study.

So our AST is made of nodes. Each node is an object and there are many kinds of nodes. For each kind
of node, there is a different class. There are 43 different classes; here they are in alphabetic order:

Argument
ArrayConstructor
ArrayDeref
ArrayType
ArrayValue
AssignStmt
BinaryOp
Body
BooleanConst
CallStmt
CompoundType
ExitStmt
Expr
FieldDecl
FieldInit
ForStmt
Formal
FunctionCall
IfStmt
IntToReal
IntegerConst
LValue
LoopStmt
NilConst
Node
ProcDecl
ReadArg

Date Printed: 1/26/06 Page 4

ReadStmt
RealConst
RecordConstructor
RecordDeref
RecordType
ReturnStmt
Stmt
StringConst
TypeDecl
TypeName
UnaryOp
ValueOf
VarDecl
Variable
WhileStmt
WriteStmt

Each class of node has a number of fields. For example, the class IfStmt is defined as:

 static class IfStmt extends Stmt {
 Expr expr;
 Stmt thenStmts;
 Stmt elseStmts;
 }

It uses the classes Stmt and Expr, which we’ll describe later.

During parsing, for each “if” statement in the source program, the parser will create one IfStmt node.
Every IfStmt node corresponds to an “if” statement in the source program being compiled. Likewise,
there is a class called WhileStmt to represent “while” statements and a class called Variable to
represent each appearance or use of a variable, and so on for each of the important kinds of things we
might see in a PCAT program.

We can see that a node of class IfStmt will contain pointers to three other nodes. The idea is that the
field expr will point to the node representing the boolean conditional expression that occurs in every
“if” statement. The field called thenStmts will point to the node representing the sequence of the “then”
statements and the elseStmts field will point to the sequence of “else” statements.

Some fields may be null, while others will never be null. Either the thenStmts or the elseStmts or both
may be null, but the expr field will never be null. The IfStmt class contains only syntactic fields; there
are no semantic fields.

Note that the IfStmt class has no methods. This is true all the Ast classes, except for a constructor in
the root superclass. The AST classes can be considered to be data-representation classes and the
methods that operate on the AST data structures are placed in other classes, which will be discussed in
the next section.

Date Printed: 1/26/06 Page 5

There is a class-subclass relationship between many of the AST classes. We say that subclasses like
IfStmt extend superclasses like Stmt. For example, the class Stmt extends Node. Node is a superclass
of Stmt and Stmt is a subclass of Node.

Node is the root class; every kind of AST node extends Node, either directly (like Stmt) or indirectly
(like IfStmt).

All of the AST classes are actually included as members of a class called Ast. If you are unfamiliar with
putting one class inside another class—it is pretty weird, after all—the only thing you really need to
know is that you will be referring in your code to the classes by using names like Ast.IfStmt, Ast.Expr,
Ast.Stmt, Ast.Node, etc. In this document, I’ll often omit the “Ast.” part and say just IfStmt, Expr,
Stmt, Node, etc.

The Compiler Classes
There are several other classes we use in our compiler.

 Class Created in... Provided by...
Main Porter
Lexer proj 2
Parser proj 3,4
Checker proj 5,6
Generator proj 8,9,10
FatalError Porter
LogicError Porter
Token Porter
PrettyPrint Porter
PrintAst Porter
StringTable Porter
SymbolTable Porter
IR Porter

Each of these classes is in a .java file with the same name.

These classes are used to group and organize all the methods. In other words, the code lives in these
classes. By their names, you can probably guess what tasks their methods are used for. We will not
really be concerned with creating objects for these classes. Each of these classes will have at most one
object, i.e., at most there will be one “instance” of each class.

For example, the compiler will create a single Lexer object. This object will then be used to do the
lexical analysis. Any local, temporary data needed only during lexing will be kept in the fields of this
object. Every time the parser needs a new token, it will invoke a method on the lexer object.

Date Printed: 1/26/06 Page 6

Likewise, there will be a single Parser object and it (or more exactly, its methods) will do the parsing
and creation of the AST. There will be one Checker object and the methods here will be used to
perform type-checking and fill in the semantic fields.

The class Main has only a single static method, called main, which will create the Parser and Checker
objects and will use them first to create the AST and then to check it. The main method will then create
a Generator object and invoke methods on it to perform intermediate code generation.

The Lexer, Parser, and Checker classes were written by students last term. You will not be given the
source code for these classes, so you will not be able to see the code there. But you should not need to
look over that code. You will be given compiled .jar files for the Lexer, Parser, and Checker classes,
so that the AST can be built and checked.

In project 8, you will create the Generator class. The main method will create a single instance of the
Generator class and will then invoke a method, which you should name generateIR, to generate the
intermediate (IR) code. The main method will pass a pointer to the AST to the generateIR method.

The FatalError and LogicError clases extend Exception and are used to deal with error conditions
that must halt the compiler dead in its tracks. The main method catches these errors and terminates with
an error message.

The class Token is used during lexical analysis. The Token class is never instantiated, i.e., there will
never be any Token objects. Instead, Token just contains some useful constant values. Here are some
constants from Token.java which you’ll be needing in the back-end:

 final static int
 AND = 0,
 ...
 DIV = 4,
 ...
 MOD = 14,
 NOT = 15,
 ...
 OR = 17,
 ...
 PLUS = 33, // +
 MINUS = 34, // -
 STAR = 35, // *
 SLASH = 36, // /
 LESS = 37, // <
 GREATER = 38, // >
 EQUAL = 39, // =
 ...
 LEQ = 51, // <=
 GEQ = 52, // >=
 NEQ = 53, // <>

Date Printed: 1/26/06 Page 7

You’ll need to use constants (such as Token.PLUS and Token.NOT) when you look at a BinaryOp or
UnaryOp node to see what kind of operator it is.

Printing an AST can be done in two ways, called PrintAst and PrettyPrint.

PrintAst produces an exhaustive dump of the AST and it is used by the grader to make sure your AST is
exactly what it should be. PrintAst produces a lot of output and is rather difficult to read, except for the
smallest programs. All the methods in class PrintAst are static, so no object is created. The PrintAst
code (which is provided by Porter) is designed to be as bullet-proof as possible. The algorithm is
designed to avoid infinite looping, even if a tree is in error and actually contains cycles or bad data.

The PrettyPrint class, which is also provided by Porter, walks the tree using a much simpler (recursive)
approach. It prints the AST is a form closely resembling the original source PCAT. The PrettyPrint
code can be used as a starting framework, as you begin to code your Generator class. The primary
method in PrettyPrint is called prettyPrintAst. This method is static. It creates a PrettyPrint object
and then invokes the relevant method on it. There are a number of methods in the PrettyPrint class; but
only the PrettyPrintAst method is static. Thus, there will be a single PrettyPrint instance, whenever
the AST is printed.

The StringTable class is used to deal with Java Strings. Its methods are all static, so there will be no
StringTable objects.

The SymbolTable class is used by the Checker class during type checking. You can safely ignore this
class, since it will not be used at all during the back-end (i.e., during code generation). All the methods
in SymbolTable are static. No SymbolTable object is created, although the class contains a nested
class, called Bucket. There are many instances of Bucket. During the compilation, there is only one
symbol table and the information representing it is kept in the static variables of class SymbolTable.

The IR class is new to Project 8. I am providing this class to facilitate the code generation process. The
IR class is a combination of data representation and code. There will be many IR objects created during
code generation: one IR object will be created for each intermediate instruction. This class contains
many static methods to make working with IR instruction objects easier. The IR class is discussed in
more detail in the Project 8 assignment.

Dealing With Java Strings
In Java, two String objects may have the same characters yet not be the same object. In other words, a
program can easily create two String objects that are “equal” in the sense of having the same characters,
but not “equal” in the sense of being different objects. To compare Strings in Java, you really ought to
use a method that goes through the Strings, character by character, comparing every byte.
Unfortunately, this is time-consuming and we would much rather be able to simply compare pointers.

Date Printed: 1/26/06 Page 8

To allow us to compare strings quickly and safely by simply comparing pointers, we have gone to some
trouble in the front-end to make sure that, for any sequence of characters, there is only one String with
those characters. In other words, we are making sure that every String is unique.

We do this by keeping a table containing all Strings; this is the purpose of the StringTable. During
lexical analysis, the lexer will read in some characters and build a string. This occurs every time an
identifier in scanned. The lexer then checks the StringTable to see if we have already seen that same
sequence of characters before. If so, the lexer will throw away the new String and use a pointer to the
old String instead.

In the lexer, we used code that looked something like this:

newString = ...scan a bunch of characters...
if (StringTable.lookupToken (newString) == ...notFound...) {
 StringTable.insert (newString, ...);
}
str = StringTable.lookupString (newString);

This way, even if the string “myOwnVar” appears in the program 361 times, there will only be one
String object with the characters “m y O w n V a r”.

Such a shared common version of a String is called the “canonical version” of the String. Of all the 361
String objects with characters “m y O w n V a r”, this one canonical object is the representative. It will
be used everywhere and the other 360 versions will be ignored.

Note that a number of nodes in the AST will contain pointers to Strings. For example, when a variable
is declared, there will be a VarDecl node in the AST. The VarDecl node contains a field, called id,
which points to the String for the identifier. Whenever the variable is used, say in some expression,
there will be a Variable node in the AST. The Variable node also contains a field, named id, which
will point to the same String.

When I say “the same String”, I mean “the very same String object”. So, in some sense, we can observe
right now that the AST was never really a tree, but is a DAG, since one object (like the String object for
“m y O w n V a r”) has several other objects pointing to it.

The bottom line is that in the back-end, if you should need to compare two strings from the AST, you
can use the == operation safely.

Date Printed: 1/26/06 Page 9

An AST Subtree for an Expression
Let’s imagine that the PCAT syntax contains some grammar rules for expressions, such as these.

E → E + T
E → T
T → T * F
T → F
F → id
F → (E)

(The actual rules you used in CS-321 were a little more complex, of course.)

Now let’s say some PCAT input source program contains an expression such as

x * y + z

Using this grammar fragment, we could build this parse tree for the expression:

E

F

T

T

z

E

T

+

* F

yF

x

Date Printed: 1/26/06 Page 10

Next consider a similar expression:

(x * y) + z

For this we would construct this parse tree:

Note that both of these expressions are semantically equivalent and we want to generate the same IR
code for both. The benefit of the AST approach is that we will “abstract away” all the irrelevant
syntactic information. For both of these expressions, our parser will build the same AST. It will build
an AST that looks like this:

* z

+

yx

E

F

T

E

z

E

T

+

* F

yF

x

F

(

T

)

Date Printed: 1/26/06 Page 11

This tree captures the essence of the expression; it’s a simple tree with a lot fewer nodes than a parse
tree and will be easier to work with.

Recall the difference between “L-Values” and “R-Values”. An L-Value corresponds to a variable’s
address and an R-Value corresponds to a variable’s value. When a variable is used in an expression, we
want its value. To get a variable’s value, we’ll first need to get its address. Then, at runtime we can go
to that address in memory and fetch its value. So, in some sense, an R-Value requires an L-Value; if
you have an L-Value, you can turn it into an R-Value by adding an additional memory fetch operation.

We need to modify our AST to reflect this. We’ll assume that a variable by itself represents an L-Value
and we’ll use a node called “value-of” to reflect the fact that, in an expression, we want the R-Value.

Next, we have to ask, how will an AST be represented with Java objects? The answer is that every node
in the tree will be represented with one Java object and every edge will be represented with one Java
reference (i.e., with a “pointer”) from the parent to the child.

There are three kinds of nodes involved here. The nodes representing the binary operators point down to
two children. The nodes representing variables are leaves and do not have any children. The nodes
representing the conversion of an L-Value into an R-Value have a single child.

To represent the AST for x*y+z using Java objects, we’ll use three classes: Ast.BinaryOp,
Ast.Variable, and Ast.ValueOf. We’ll discuss each of these classes in turn.

Here is the Ast.BinaryOp class:

* value-of

+

value-ofvalue-of z

yx

Date Printed: 1/26/06 Page 12

 static class BinaryOp extends Expr {
 int op;
 Expr expr1;
 Expr expr2;
 int mode;
 }

There are several kinds of binary operators. The op field tells which operator it is. Here are the possible
values for op:

Meaning
Token.PLUS +
Token.MINUS -
Token.STAR *
Token.SLASH / (real division)
Token.DIV div (integer division)
Token.MOD mod (remainder after integer division)
Token.AND and
Token.OR or
Token.LESS <
Token.LEQ <=
Token.GREATER >
Token.GEQ >=
Token.EQUAL =
Token.NEQ <> (not equal)

While we’re at it, here are the choices for the op field for class Ast.UnaryOp:

Meaning
Token.PLUS unary + (nop)
Token.MINUS unary -
Token.NOT not

The expr1 field will point to the left operand. More precisely, the expr1 field will point to the root of
an AST sub-tree representing the sub-expression that occurs to the left of the operator. Likewise, the
expr2 field will point to the right sub-tree.

The operators can work on several kinds of data. For example, PLUS can mean integer addition or
floating point addition and we’ll have to generate different machine code depending on which it is. The
mode field will give us this information.

There are several “modes”. Here are the legal modes:

 static final int INTEGER_MODE = 1;
 static final int REAL_MODE = 2;
 static final int STRING_MODE = 3;
 static final int BOOLEAN_MODE = 4;

Date Printed: 1/26/06 Page 13

In BinaryOp and UnaryOp, the mode field will have one of two possible values:

INTEGER_MODE
REAL_MODE

The other two modes are used elsewhere.

For the following operators, the mode may be either INTEGER_MODE or REAL_MODE:

Token.PLUS (either as a BinaryOP or as a UnaryOP)
Token.MINUS (either as a BinaryOP or as a UnaryOP)
Token.STAR
Token.LESS
Token.LEQ
Token.GREATER
Token.GEQ
Token.EQUAL
Token.NEQ

For Token.SLASH, it will only be REAL_MODE. The mode will be INTEGER_MODE for all other
operators.

Note that some of the operators (like EQUAL) can deal with boolean values or even arrays and records.
For these, the mode will still be INTEGER_MODE. In other words, mode=REAL_MODE just
signals when we need to use floating-point operations. All other times, we will use integer instructions.

Here is the class Ast.Variable:

 static class Variable extends LValue {
 String id;
 Node myDef;
 int currentLevel;
 }

For each variable, we capture a String in id giving its spelling during the parse. The fields named
myDef and currentLevel are semantic fields and are filled in during type-checking.

During type-checking, we looked the string up in the SymbolTable and made sure it was properly
declared. At that time, we saved this information, which will come in handy during code generation, in
the myDef field. The myDef field was set to point to the node that describes the declaration of that
variable. A variable can be defined either in a variable declaration or as a formal parameter to a
procedure. The myDef field will point to either an Ast.VarDecl or Ast.Formal node.

An Ast.Variable node is an L-Value; it is not an expression. The purpose of the Ast.ValueOf node is to
“convert” an L-Value into an R-Value so it can be used in an expression.

Date Printed: 1/26/06 Page 14

Here is the class Ast.ValueOf:

 static class ValueOf extends Expr {
 LValue lValue;
 }

Given these classes, we can now show how the AST is represented in Java. In the picture below, each
object has a label on top showing its class. The fields are labeled to the left of the object.

The fields named myDef and currentLevel (in the Variable nodes) are semantic fields and are not
shown here.

The original expression

x * y + z

occurs somewhere within a PCAT program, perhaps in an assignment statement. The objects shown
above form a sub-tree, and the root of this sub-tree would be pointed to by some other node in the AST,
perhaps by an Ast.AssignStmt node. Or perhaps this expression is a sub-expression in a larger
expression like

a – (x * y + z) / 2

in which case this subtree would be pointed to by another Ast.BinaryOp node.

BinaryOp
Token.STARop

expr1
expr2
mode REAL_MODE

BinaryOp
Token.PLUSop

expr1
expr2
mode REAL_MODE

Variable
id

myDef
currentLevel

“z”

Variable
id

myDef
currentLevel

“x” Variable
id

myDef
currentLevel

“y”

ValueOf
lValue

ValueOf
lValue

ValueOf
lValue

Date Printed: 1/26/06 Page 15

The AST Classes
Be sure to print out the document called “Ast Summary”. It may be found in the project 4 directory, or
at

www.cs.pdx.edu/~harry/compilers/p4/ASTSummary.pdf

This document shows all the syntactic fields in every kind of object. Although, it does not show the
semantic fields, it is a good guide to understanding the AST.

Let’s begin with the class hierarchy. The indentation show the class-subclass relationship. For example,
Stmt extends Node (or we say “Stmt is a subclass of Node”). Likewise, AssignStmt is a kind of Stmt,
so AssignStmt is a subclass of Stmt.

Node
Body
VarDecl
TypeDecl
TypeName
ProcDecl
Formal
CompoundType

ArrayType
RecordType

FieldDecl
Stmt

AssignStmt
CallStmt
ReadStmt
WriteStmt
IfStmt
WhileStmt
LoopStmt
ForStmt
ExitStmt
ReturnStmt

ReadArg
Expr

BinaryOp
UnaryOp
IntToReal
FunctionCall

Date Printed: 1/26/06 Page 16

ArrayConstructor
RecordConstructor
IntegerConst
RealConst
StringConst
BooleanConst
NilConst
ValueOf

Argument
ArrayValue
FieldInit
LValue

Variable
ArrayDeref
RecordDeref

Node is an abstract class, which means there are no objects which are Nodes, without being something
more specific, like a Body or an AssignStmt node.

Notice that there are many kinds of statements. Stmt is also an abstract class, with a subclass for each
kind of statement that can appear in a PCAT program. For example, a “return” statement would be
represented with a ReturnStmt node.

Also notice that there are many kinds of expression. Expr is an abstract class. For example, an integer
can, by itself, appear anywhere an expression can appear. The integer would be represented with an
IntegerConst object.

The class LValue is also abstract. There are three kinds of L-Value: a variable, an array dereference
(such as “a[i]”) and a record dereference (such as “myRec.name”).

Finally, CompoundType is abstract. There are two kinds of compound type: ArrayType and
RecordType.

Many of the classes correspond to syntactic categories in the PCAT grammar. For example, there is a
one-to-one correspondence between the kinds of PCAT statements shown in the grammar rules and the
subclasses of Stmt.

Take a look at the grammar on the last page of the PCAT Reference Manual.

For example, here are the rules for LValue:

 LValue → ID
→ LValue '[' Expression ']'
→ LValue '.' ID

and notice that the class LValue has 3 subclasses: Variable, ArrayDeref, and RecordDeref.

Date Printed: 1/26/06 Page 17

The Fields in the AST Classes
Next we give a summary of all the fields in the classes. (I believe the following information is accurate,
but the file Ast.Java is the ultimate reference.)

The *** indicates a semantic field, which is filled in after parsing.

Node
lineNumber: int

Body
typeDecls: TypeDecl
procDecls: ProcDecl
varDecls: VarDecl
stmts: Stmt

VarDecl
id: String
typeName: TypeName
expr: Expr
next: VarDecl
lexLevel: int ***

TypeDecl
id: String
compoundType: CompoundType
next: TypeDecl

TypeName
id: String
myDef: CompoundType ***

ProcDecl
id: String
retype: TypeName
formals: Formal
body: Body
next: ProcDecl
lexLevel: int ***

Formal
id: String
typeName: TypeName
next: Formal
lexLevel: int ***

Date Printed: 1/26/06 Page 18

CompoundType
ArrayType

elementType: TypName
RecordType

fieldDecls: FieldDecl
FieldDecl

id: String
typeName: TypeName
next: FieldDecl

Stmt
next: Stmt

AssignStmt
lValue: LValue
expr: Expr

CallStmt
id: String
args: Argument
myDef: ProcDecl ***

ReadStmt
readArgs: ReadArg

WriteStmt
args: Arguments

IfStmt
expr: Expr
thenStmts: Stmt
elseStmts: Stmt

WhileStmt
expr: Expr
stmts: Stmt

LoopStmt
stmts: Stmt

ForStmt
lValue: LValue
expr1: Expr
expr2: Expr
expr2: Expr
stmts: Stmt

ExitStmt
myLoop: Stmt ***

ReturnStmt
expr: Expr
myProc: ProcDecl

Date Printed: 1/26/06 Page 19

Expr
BinaryOp

op: int
expr1: Expr
expr2: Expr
mode: int ***

UnaryOp
op: int
expr: Expr
mode: int ***

IntToReal ***
expr: Expr

FunctionCall
id: String
args: Argument
myDef: ProcDecl ***

ArrayConstructor
id: String
values: ArrayValues
myDef: TypeDecl ***

RecordConstructor
id: String
values: FieldInits
myDef:TypeDecl ***

IntegerConst
iValue: int

RealConst
rValue: double

StringConst
sValue: String

BooleanConst
iValue: int

NilConst
ValueOf

lValue: LValue
Argument

expr: Expr
mode: int ***
next: Argument

ArrayValue
countExpr: Expr
valueExpr: Expr
next: ArrayValue

Date Printed: 1/26/06 Page 20

FieldInit
id: String
expr: Expr
myFieldDecl: FieldDecl ***
next: FieldInit

LValue
Variable

id: String
myDef: Node (either VarDecl or Formal) ***
currentLevel: int ***

ArrayDeref
lValue: LValue
expr: Expr

RecordDeref
lVlaue: LValue
id: String
myFieldDecl: FieldDecl ***

Representing Lists
In PCAT, there are a number of syntactic constructs that repeat. For example, following the ELSE
keyword, there can be zero or more statements. As another example, there can be zero or more formal
parameters in a procedure declaration.

Here is a PCAT procedure declaration, with eight formal parameters:

 procedure foo (a,b,c,d,e: int; f,g,h: real) is
 begin
 ...
 end;

Sequences are represented with linked lists in the AST. For example, here is a portion of the class
ProcDecl. For a procedure like “foo”, there will be a single ProcDecl node and it will point to a linked
list of objects, one for each formal parameter.

 static class ProcDecl extends Node {
 ...
 Formal formals;
 ...
 }

Each formal parameter is represented by an Formal object. Each Formal object contains a next
pointer.

Date Printed: 1/26/06 Page 21

 static class Formal extends Node {
 ...
 Formal next;
 }

To go though a linked list, we might use code like this:

 for (Formal f = formals; f = f.next; f) {
 ... f ...
 }

Conceptually, we might think of a single ProcDecl node which is capable of accommodating zero-or-
more children, like this:

To represent such a node (with a variable number of children), we’ll build a structure more like this:

[Another design approach to dealing with multiple children is to represent sequences with arrays. In
fact, Andrew Tolmach uses arrays for representing sequences.]

Our AST will use linked lists to represent sequences of “zero-or-more” occurrences for several sorts of
sequences. The following classes all contain a field called next and their objects can be parts of lists:

a b

ProcDecl

dc fe hg

a b

ProcDecl

dc fe hg

Date Printed: 1/26/06 Page 22

VarDecl variable declarations
TypeDecl type declarations
ProcDecl procedure declarations
Formal formal parameters to procedures
FieldDecl fields within a record
Stmt statements
ReadArg arguments to a “read” statement
Argument arguments to a procedure invocation
ArrayValue count-value pairs in an array initialization
FieldInit initial values for fields in a record initialization

Statement Sequencing
In a number of places in the PCAT syntax, there can be zero-or-more statements. For example, a
“while” loop can contain zero-or-more statements in its body and an “if” statement can have zero or
more statements in its “then” part or in its “else” part.

For example, here is a sequence of 4 statements:

 a := x * y + z;
 b := i * j;
 c := a + b;
 return c;

Every statement node has a next field, so each statement can be a member of a linked list.

 abstract static class Stmt extends Node {
 Stmt next;
 }
 ...
 static class AssignStmt extends Stmt {
 LValue lValue;
 Expr expr;
 }
 ...

Here is how we would represent the sequence of 4 statements. (The sub-trees are not shown in detail
and the myProc pointer in the ReturnStmt node is a semantic pointer that points back upward into the
AST and it is not shown.)

Date Printed: 1/26/06 Page 23

Sequences of statements can occur in many places. For example, the general form of an “if” statement
in PCAT is...

if ...expression... then
 ...list of “then” statements...
else
 ...list of “else” statements...
end;

Here is IfStmt:

 static class IfStmt extends Stmt {
 Expr expr;
 Stmt thenStmts;
 Stmt elseStmts;
 }

The thenStmts field points to a linked list of statements and the elseStmts field points to another linked
list of statements. Of course, either of these lists could be null. Here is an example where elseStmts
would be null:

if a=4 then
 x := b;
 y := c;
 z := d;
end;

Here is an example where thenStmts would be null.

if x<9 then
else
 y := 43;
end;

AssignStmt
next

lValue
expr

AssignStmt
next

lValue
expr

AssignStmt
next

lValue
expr

ReturnStmt
nullnext

expr
myProc

...a...

...x*y+z...

...b...

...i*j...

...c...

...a+b...

...c...

Date Printed: 1/26/06 Page 24

In fact, both could be null, as in the following program fragment:

if n < 0 then
 (* n := 0; *)
else
 (* not yet implemented *)
end;

In the AST classes, whenever a field points to a linked list of nodes, the name of the field is pluralized.
In this example, the fields thenStmts and elseStmts end with an “s” indicating that they point to a
linked list of Stmt nodes.

By the way, the “if” statement in the PCAT grammar contains zero-or-more “elseif” clauses. Here are
the relevant grammar rules. (In the grammar rules, keywords are in boldface and the braces mean “zero-
or-more occurrences”. The brackets mean “optional”.)

Statement → ...
→ if Expression then {Statement}
{elseif Expression then {Statement}}
[else {Statement}] end ';'

→ ...

Here is an example:

if tmp < 0 then
 desc := 1;
elseIf tmp < 32 then
 desc := 2;
elseIf tmp < 55 then
 desc := 3;
elseIf temp < 80 then
 desc := 4;
else
 desc := 5;
end;

Unfortunately, the IfStmt class contains only room for a THEN statement list and an ELSE statement
list, but nothing that could obviously accommodate ELSEIF.

Date Printed: 1/26/06 Page 25

To deal with ELSE-IF clauses, note that:

if expr-1 then
stmts-1

elseif expr-2 then
stmts-2

...
elseif expr-n then

stmts-n
else

stmts-0
end;

is semantically equivalent to:

if expr-1 then
stmts-1

else
if expr-2 then

stmts-2
else

...
if expr-n then

stmts-n
else

stmts-0
end;

end;
end;

For a program containing the first IF-ELSEIF-ELSEIF-END statement, the parser will build exactly the
same tree as it would for the set of nested IF-THEN-ELSE statements. The tree it constructs is shown
next. In that diagram, the “tree” has been visually distorted to suggest that a list of ELSEIF clauses can
be viewed as a linked list of IfStmt nodes, linked on the elseStmts field.

Date Printed: 1/26/06 Page 26

The “main” Method
Here is the main method of our compiler (somewhat simplified):

Ast.Body ast;
Parser parser;
Checker checker;
Generator generator;
...
// Parse the source and return the AST...
parser = new Parser (args);
ast = parser.parseProgram ();

// Check the AST...
checker = new Checker ();
checker.checkAst (ast);

// Generate the IR...
generator = new Generator ();
generator.generateIR (ast);

// Print the IR...
IR.printIR ();

First, the code creates a Parser object and then invokes the parseProgram method on it to scan the
source and build a AST. Then the code creates a Checker object and then invokes the checkAst
method on it.

Next, it creates a Generator object and invokes the code you will write in Project 8 to generate
intermediate instructions. Finally, it invokes the printIR method, which I am providing, to print out the
results.

There is also some error checking in main, which is not shown here. Basically, if any errors occur
during the front-end processing, the main method will abort before invoking the generateIR method.

IfStmt
next
expr

thenStmts
elseStmts

expr-nexpr-2expr-1 stmts-0

stmts-n

stmts-2stmts-1

IfStmt
next
expr

thenStmts
elseStmts

IfStmt
next
expr

thenStmts
elseStmts

•••

Date Printed: 1/26/06 Page 27

Dealing With Errors
In Project 8, you should not encounter any errors, since the source PCAT program was thoroughly
checked during the front-end processing. Any lexical, syntactic, or semantic errors will have been
caught by the Lexer, the Parser, and the Checker code. The AST passed to the generator will be
correct.

Errors in the front-end are handled in two ways. If the error is recoverable, then a message is printed on
stderr and processing continues. If the error is unrecoverable, then an exception is thrown. If any
exceptions are thrown, they are caught way up in main and the compiler will terminate after printing the
error message.

The compiler uses two exceptions: FatalError and LogicError.

You may want to throw LogicError in the code you write. As you are coding, when there is some
condition you expect to be true—but a part of you wonders whether it will really always be true—it is
often a good idea to add some code to check it to make sure. If this condition turns out to be not true
sometime, then it means something is dreadfully wrong. Either your code contains a bug or you have
somehow misunderstood the problem. The thing to do is throw LogicError.

For example, I said previously that the BinaryOp node contains an op field, which tells which operator
it represents. I said that the op should have certain values, and your code might contain a “switch” on
the op field to handle each value differently. A common mistake is to forget some case. Another
problem occurs if the program is changed and a new case is added, but you forget to update the
“switch”.

So here is how you might want to code the “switch” statement:

Date Printed: 1/26/06 Page 28

switch (binNode.op) {
 case Token.PLUS:
 ...
 case Token.MINUS:
 ...
 ...
 case Token.GREATER:
 ...
 case Token.GEQ:
 ...
 default:
 throw new LogicError ("Unknown binNode.op in genBinaryOp");

 }

Since many of our methods are mutually recursive and will call other methods in complex patterns,
dependent on the exact shape on an AST, it means that an exception can arise when just about any
method is active. Java requires you to say, in the header of a method, which exceptions might arise
while the method is active. The easiest thing to do is to include throws FatalException in every
method. For example:

Ast.Node genBinaryOp (Ast.BinaryOp binNode, ...)
 throws FatalError
{
 ...
 switch (binNode.op) {
 ...

This works since LogicError is a kind of FatalError.

The Superclass “Node”
The class Node has one field, called lineNumber, which means that every node will inherit a
lineNumber field. This integer gives the source code line number on which the corresponding source
construct appeared.

For example, an IfStmt node might have a lineNumber of 46, indicating that the “if” statement it
represents was found on—or at least began on—line 46.

Having a line number for every node is useful when printing error messages during type checking. To
print an error message, we can supply the relevant AST node to the error routine, and the error handling
code will extract the line number and use it in printing the error message.

Here is a message that might be printed during type checking:

Error on line 46: Conditional expr after IF, ELSEIF, or WHILE is not BOOLEAN

Since we do not expect errors in the back-end, you can safely ignore the lineNumber field.

Date Printed: 1/26/06 Page 29

The “Body” Node
A PCAT program consists of a “body”. Here are the relevant grammar rules:

Program → program is Body ';'
Body → {Declaration} begin {Statement} end

Here is an example program:

program is
 var x,y: integer;
 begin
 x := 5;
 y := x * 3;
 end;

A procedure also contains a “body”:

ProcedureDecl → ID FormalParams [':' TypeName] is Body ';'

Here is an example procedure declaration, which might be found inside a larger program:

...
procedure foo (a,b,c: integer) : boolean is
 var x,y: integer;
 begin
 x := 5;
 y := x * 3;
 end;
...

In both examples, the body contains a variable declaration and a sequence of two statements.

There are three kinds of declarations that can appear in a body: variable, type, and procedure. A body
can have any number of declarations. Our example defines two variables. A body can also include
several type declarations and several procedure declarations.

Date Printed: 1/26/06 Page 30

Here is Body:

 static class Body extends Node {
 TypeDecl typeDecls;
 ProcDecl procDecls;
 VarDecl varDecls;
 Stmt stmts;
 int frameSize; // Not used until proj 9
 }

Each of the fields typeDecls, procDecls, varDecls, and stmts will point to a linked list. If there are no
types, then typeDecls will be null. Likewise, procDecls, varDecls and stmts may be null.

This example shows that the Ast.java file contains a few fields (e.g., frameSize) that will be used later
in the class, and these are commented appropriately. Just ignore frameSize until project 9, when we’ll
talk about it. Also, some of the semantic fields were added during projects 5 and 6, so a few of the
fields will be commented like this:

 static class Variable extends LValue {
 String id;
 Node myDef; // Not used until proj 5
 ...
 }

(It turns out that you’ll need to use the myDef field in project 8.)

[Elsewhere in this document, I am replacing fields that are not needed until later with “...” to keep things
simpler.]

Variable Declarations
Here are the grammar rules concerning variable declarations:

Declaration → var VarDecl {VarDecl}
→ type TypeDecl {TypeDecl}
→ procedure ProcedureDecl {ProcedureDecl}

VarDecl → ID { ',' ID} [':' TypeName] ':=' Expression ';'
TypeName → ID

Here are three examples of variable declarations you might find at the beginning of a “body”:

Date Printed: 1/26/06 Page 31

Example #1:
 var x, y, z: integer := 0;
 var a, b, c: integer := 2;

Example #2:
 var x, y, z: integer := 0;
 a, b, c: integer := 2;

Example #3:
 var x: integer := 0;
 y: integer := x;
 z: integer := x;
 a: integer := 2;
 b: integer := a;
 c: integer := a;

All three are semantically identical and all three will be represented the same way in theAST. Namely,
there will be a linked list of 6 VarDecl nodes.

[As a minor point, there will only be two TypeName nodes created in examples 1 and 2. Each of the six
VarDecl nodes will point to one of these TypeName nodes. For example 3, there will be 6 TypeName
nodes created, so actually there is a minor difference in the AST trees. In the first two examples, the
TypeName nodes will have more than one parent and (technically) our AST will be a DAG, not a tree.
However, you can safely ignore this point.]

Note that every variable must be initialized in PCAT. There is no way to pick up uninitialized data.

The VarDecl class is used to represent variable declarations:

 static class VarDecl extends Node {
 String id;
 TypeName typeName;
 Expr expr;
 VarDecl next;
 int lexLevel; // Not used until proj 5
 ...
 }

In the example we are looking at, 6 VarDecl objects will be needed, one for each variable. For
example, it will take one VarDecl object to represent:

a: integer := 2;

Each VarDecl is for a single variable and the id points to the name of this variable, “a” in this case.
Each variable has a type, which is given with a simple name. The name can be one of the predefined
types:

Date Printed: 1/26/06 Page 32

integer
real
boolean

or it can be a user-defined type that was declared in a type declaration:

type MyArray is array of real;
...
var a: MyArray := ...;

In any case, the typeName field points to a TypeName object which contains the name of the type.
Each variable must be initialized and the expr field points to an expression, which can be quite complex,
as in:

var a: integer := x*y+z;

The linked list of VarDecls is chained together on the next field.

“Body”s can be nested in PCAT and each body has a “lexical level”, which is sometimes called a
“nesting depth”. During final code generation, it will be important to know at which lexical level a
variable was defined. During type checking, we stored that lexical depth in the VarDecl in the field
lexLevel, but we won’t need it again until project 11.

Type Declarations
In PCAT, the programmer can work with array and record types, but they must be declared in “type
declarations”. Here are the relevant grammar rules:

Declaration → var VarDecl {VarDecl}
→ type TypeDecl {TypeDecl}
→ procedure ProcedureDecl {ProcedureDecl}

TypeDecl → TypeName is CompoundType ';'
TypeName → ID
CompoundType → array of TypeName

→ record FieldDecl {FieldDecl} end
FieldDecl → ID ':' TypeName ';'

Here is are four examples of the “FieldDecl” grammatical construct:

f2: real;
nums: MyArray;
age: integer;
married: boolean;

Here is are two examples of the “CompoundType” grammatical construct:

Date Printed: 1/26/06 Page 33

array of integer;
record age: integer; married: boolean; end;

Here are two examples of the “TypeDecl” grammatical construct:

MyArray is array of integer;
MyNewType is record age: integer; married: boolean; end;

Here is an example of the “Declaration” grammatical construct, involving only type declarations:

type MyArray is array of integer;
 MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;
 RecVec is array of MyRecord;

We say that “arrays” and “records” are “compound types”, since they are made up of other types like
“integer” , “real”, or even other compound types. A type is either a compound type (like MyArray,
MyRecord, and RecVec) or a basic type (like integer, real, or boolean).

Each compound type must be named in a type declaration and each type defined in a declaration must be
a compound type. Therefore, each TypeDecl associates a name with either an array type or a record
type.

Here is TypeDecl:

 static class TypeDecl extends Node {
 String id;
 CompoundType compoundType;
 TypeDecl next;
 }

The id gives the name (e.g., “MyArray”) and the compoundType field points to either an ArrayType
object or an RecordType object. Each Body points to a linked list (possibly empty) of TypeDecl
nodes, linked on their next fields. To represent the declarations of MyArray, MyRecord, and RecVec,
the AST will contain a linked list of 3 TypeDecl objects.

Note that a “Body” begins with “zero-or-more” declarations:

Body → {Declaration} begin {Statement} end

Consequently, the PCAT programmer could also write the above example as shown below. Both would
mean the same and would be represented in the AST identically. Namely, both would be represented
with a linked list of 3 TypeDecl objects.

Date Printed: 1/26/06 Page 34

type MyArray is array of integer;
type MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;
type RecVec is array of MyRecord;

Mixing Up Declarations
The PCAT grammar allows a single body to contain lots of variable, type, and procedure declarations,
all mixed together. Here is an example involving many variable declarations and type declarations:

var x, y, z: integer := 0;
type MyArray is array of integer;
 MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;
var w: real := 0.0;
var a, b, c: integer := 0;
 i, j, k: integer := 0;
type RecVec is array of MyRecord;
var q1, q2, q3: integer := 0;
type BoolArr is array of boolean;
type ArrTyp1 is array of integer;
 ArrTyp2 is array of ArrTyp1;
 ArrTyp3 is array of ArrTyp2;

The parser will sort all these out. This example declares 13 variables:

x, y, z, w, a, b, c, i, j, k, q1, q2, and q3

and 7 types:

MyArray, MyRecord, RecVec, BoolArr, ArrTyp1, ArrTyp2, and ArrTyp3

The AST will contain a linked list of 13 VarDecl nodes and 7 TypeDecl nodes. The exact grouping
information is not semantically important and is not captured in the AST.

Date Printed: 1/26/06 Page 35

To put it another way, the list organization in the AST would be the same as the parser would produce
for the following set of declarations:

type MyArray is array of integer;
type MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;
type RecVec is array of MyRecord;
type BoolArr is array of boolean;
type ArrTyp1 is array of integer;
type ArrTyp2 is array of ArrTyp1;
type ArrTyp3 is array of ArrTyp2;
var x: integer := 0;
var y: integer := x;
var z: integer := x;
var w: real := 0.0;
var a: integer := 0;
var b: integer := a;
var c: integer := a;
var i: integer := 0;
var j: integer := i;
var k: integer := i;
var q1: integer := 0;
var q2: integer := q1;
var q3: integer := q1;

Likewise, if there are several procedure declarations mixed in among the other declarations, they too
will be grouped together into a single linked list of ProcDecl nodes.

Array Types
Here is ArrayType:

 static class ArrayType extends CompoundType {
 TypeName elementType;
 }

The only field, elementType, names the type of the array elements. For example, in

array of MyRecord

each element in the array will be a record. (This presumes there is a type declaration for MyRecord
elsewhere in the PCAT program.) In the ArrayType node representing

Date Printed: 1/26/06 Page 36

array of MyRecord

the elementType field will point to a TypeName node, whose id will name “MyRecord”.

Record Types
PCAT supports record types. A record is like a “C” struct.

You can also think of a record as being similar to an “object”, with the following differences: there are
no methods associated with records and record types are not related to each other the way classes are
related to other classes in the class-subclass hierarchy.

Here is an example record type from a PCAT program:

record
 f1: integer;
 f2: real;
 f3: boolean;
end;

The only place a record type can be used is in a type declaration, such as:

type MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;

A record type has a sequence of fields. Each field has a name and a type. In an AST, we use two kinds
of nodes to represent a record type: RecordType and FieldDecl.

 static class RecordType extends CompoundType {
 FieldDecl fieldDecls;
 ...
 }

 static class FieldDecl extends Node {
 String id;
 TypeName typeName;
 FieldDecl next;
 ...
 }

Date Printed: 1/26/06 Page 37

[This may be a little confusing, since we are using “fields” in Java objects to represent “fields” in PCAT
record types!!!]

The RecordType object contains a single field, called fieldDecls, which points to a linked list of
FieldDecl nodes. There is one FieldDecl node for each field in the record. Our example has three fields
(named f1, f2, and f3) so the linked list would have three nodes, each linked on next.

Each FieldDecl has the name of the field in id. For example, id might point to the string “f1”. Each
FieldDecl also has a typeName, which will point to a TypeName node. For example, the first
FieldDecl in the list will point to a TypeName whose id is “integer”.

Procedure Declarations
Here are the PCAT grammar rules for a procedure declaration:

ProcedureDecl → ID FormalParams [':' TypeName] is Body ';'
FormalParams → '(' FormalSection {';' FormalSection} ')'

→ '(' ')'
FormalSection → ID {',' ID} ':' TypeName

Here is an example procedure declaration:

procedure foo (a,b: integer; i,j,k: real; x: integer;) : boolean is
 var t1, t2: integer;
 type MyArray is array of real;
 MyArray2 is array of boolean;
 procedure bar1 (...) ... is ... begin ... end;
 procedure bar2 (...) ... is ... begin ... end;
 begin
 t1 := a+b;
 t2 := i+j+k;
 if t1 > t2 then
 return false;
 end;
 return x<0;
 end;

Notice that a procedure may or may not return a value. In this example, foo happens to return a boolean
value. If a procedure returns a value, it is called a “function”. The “ : return-type” part is optional. If it
is not present, then it’s called a “void procedure” and it doesn’t return anything.

You can see that each procedure has an ID (e.g., foo), a list of zero or more formal parameters (e.g., a, b,
i, j, k, and x), and optional return type (e.g., boolean). A procedure also has a body. In this example,
the body is rather long. The body is shown below. It contains a bunch of stuff (including two nested
procedures!) but it is all represented with an AST subtree whose root is a Body node.

Date Printed: 1/26/06 Page 38

 var t1, t2: integer;
 type MyArray is array of real;
 MyArray2 is array of boolean;
 procedure bar1 (...) ... is ... begin ... end;
 procedure bar2 (...) ... is ... begin ... end;
 begin
 t1 := a+b;
 t2 := i+j+k;
 if t1 > t2 then
 return false;
 end;
 return x<0;
 end;

To represent a procedure declaration, we use two kinds of node: Ast.ProcDecl and Ast.Formal:

 static class ProcDecl extends Node {
 String id;
 Formal formals;
 TypeName retType;
 Body body;
 ProcDecl next;
 int lexLevel; // Not used until proj 5
 }
 static class Formal extends Node {
 String id;
 TypeName typeName;
 Formal next;
 int lexLevel; // Not used until proj 5
 ...
 }

You can see that ProcDecl has a field for each of the components in the declaration. The id points to
the name of the procedure (e.g., “foo”). The formals field points to a linked list of Formal nodes.
There will be one Formal node for each formal parameter. In this example, the list would contain 6
Formal nodes, one each for a, b, i, j, k, and x. For other procedures, formals would be null if there
were no parameters. If there is a return type, then retType will point to a TypeName (e.g., for
“boolean” in this example). The body field will point to a Body node, which will represent all the rest
of the procedure, namely the local declarations and the statement list.

ProcDecls are kept on a linked list, and the next field is used for the list of ProcDecl nodes. (By the
way, each procedure declaration is contained within some “enclosing” body. Recall that each Body
node contains a pointer, called procDecls, to a linked list of ProcDecl nodes.)

More precisely, procedures are contained in bodies and bodies are contained in procedures. As we go
deeper and deeper, the nesting level gets greater and greater. The nesting depth could be kept in the
Body nodes or it could kept in ProcDecl nodes; we have chosen to keep it in the ProcDecl nodes. This
is the lexLevel field in ProcDecl.

Date Printed: 1/26/06 Page 39

Each Formal node contains the name of the parameter in the id field, (e.g., “a”) and the type of the
paratemer in typeName. They are linked on their next fields.

Constants in Expressions
Expressions can contain several kinds of constant values.

Expressions can contain integers, as in:

i + 123

Expressions can contain real values, as in:

(3.1415 * dia) < 1.0

Expressions can contain boolean constants true and false, as in:

(b1 == b2) and (b3 == false) and (b4 == b5) and (b6 == true)

Expressions can contain the nil constant, as in:

if (p == nil) then ...

String constants can be used as arguments in “write” statements, as in:

write ("The value is ", x);

To represent constants, we use the classes IntegerConst, RealConst, BooleanConst, NilConst, and
StringConst. Here are their definitions:

Date Printed: 1/26/06 Page 40

 static class IntegerConst extends Expr {
 int iValue;
 }
 static class RealConst extends Expr {
 double rValue;
 ...
 }
 static class BooleanConst extends Expr {
 int iValue;
 }
 static class NilConst extends Expr {
 }
 static class StringConst extends Expr {
 String sValue;
 ...
 }

In IntegerConst, the field iValue will contain the value of the constant, e.g., 123.

In RealConst, the field rValue will contain the value of the constant, e.g., 3.1415.

In BooleanConst, the field iValue will contain 1 for “true” or 0 for “false”.

In StringConst, the field sValue will contain the value of the constant, e.g., “The value is ”.

These values will appear in the AST in expression subtrees. For example, the expression

(3.1415 * dia) < 1.0

would be represented as:

Date Printed: 1/26/06 Page 41

Integer-To-Real Conversions
According to the semantics of PCAT, an integer-to-real conversion must be inserted by the compiler in
certain cases.

For example, in the following expression, assume that “i” has type integer. When integers are added to
reals, the compiler must first insert a data-type conversion.

3.1415 + i

Fortunately, the need for a conversion was detected during type checking and, at that time, the AST was
modified by the insertion of an extra node to represent the needed conversion. This expression would be
represented like this:

BinaryOp
Token.STARop

expr1
expr2
mode REAL_MODE

BinaryOp
Token.LESSop

expr1
expr2
mode REAL_MODE

Variable
id

myDef
currentLevel

“dia”

LValue
lValue

RealConst
3.1415rValue

RealConst
1.0rValue

Date Printed: 1/26/06 Page 42

When this expression is printed out by PrettyPrint, it will print as follows, to show the presence of the
conversion in the AST.

(3.1415 + intToReal (i))

PCAT only uses an integer-to-real conversion; no other data type conversions (like short-to-long, or
boolean-to-integer) are necessary.

CallStmts versus FunctionCalls
A procedure may return a value or not. A “void” procedure does not return a value. The declaration of
a void procedure will not have a return type; a non-void procedure will have return type. Here are two
procedures:

BinaryOp
Token.PLUSop

expr1
expr2
mode REAL_MODE

RealConst
3.1415rValue IntToReal

expr

Variable
“i”

LValue
lValue

id
myDef

currentLevel

Date Printed: 1/26/06 Page 43

procedure foo (a: integer) : integer is
 begin
 return a * 100;
 end;
procedure bar (x: integer) is
 begin
 if x<0 then
 write ("The value is negative");
 end;
 end;

The procedure foo returns a value. It must be invoked in a “function call”, which can only occur in an
expression. In other words, the PCAT programmer may only invoke foo in places that expressions may
be used, which means that the returned value will always end up being used somewhere. Here are some
legal invocations of foo:

i := foo (4);
if foo(j) < 34 then ...
write (foo(4*k));

The procedure bar does not return a value. It may only be invoked in a “call statement”. Here are
some legal invocations of bar:

i := 43;
bar(i*j);
bar(k-(4*i));

A non-void procedure like foo cannot be invoked in a call statement, like this:

foo (i); (* error *)

Likewise, a void procedure like bar cannot be invoked within an expression. Both of these errors have
been checked for in the front-end.

[Note that in “C” and Java it is legal to invoke a non-void procedure at the statement level. The returned
value is simply discarded.]

When a void procedure is invoked at the statement level, it is done in a “call” statement, which is
represented in the AST with a CallStmt node. Note that CallStmt is a kind of Stmt.

 static class CallStmt extends Stmt {
 String id;
 Argument args;
 ProcDecl myDef; // Not used until proj 5
 }

Date Printed: 1/26/06 Page 44

Here are the relevant grammar rules for a “call” statement:

Statement → ...
→ ID Arguments ';'
→ ...

Arguments → '(' Expression {',' Expression} ')'
→ '(' ')'

There can be any number of argument expressions. For example, in the following “call” statement:

myproc (4, j+k, x*y*z, n+1);

there are 4 expressions to be passed as arguments. The args field points to a linked list of Argument
nodes. There will be one Argument node for each expression. The i-th Argument node contains a
pointer to the i-th expression.

Here is the definition Argument:

 static class Argument extends Node {
 Argument next;
 Expr expr;
 int mode; // Not used until proj 6
 }

The mode field is not used for Arguments of CallStmts and FunctionCalls. The Argument node is
also used for WriteStmt nodes and, for these, the mode field is important.

Recall that CallStmt is a kind of Stmt node. Next, we show FunctionCall, which is a kind of Expr
node.

 static class FunctionCall extends Expr {
 String id;
 Argument args;
 ProcDecl myDef; // Not used until proj 5
 }

Here are the grammar rules relevant to function calls:

Expression → ...
→ ID Arguments
→ ...

Arguments → '(' Expression {',' Expression} ')'
→ '(' ')'

Here is an example function call. In this example, the function call expression is used as the right-hand
side expression in an assignment statement:

x := myfun (2*i, j, k+1);

Date Printed: 1/26/06 Page 45

Like CallStmt, a FunctionCall contains a pointer, also named args, to a linked list of Argument nodes.
There will be one Argument node for each expression. In this example, args would point to a linked
list of 3 Argument nodes, each pointing to an expression.

Below is the AST for the above assignment statement, showing the FunctionCall node and the linked
list of Argument nodes.

Both the CallStmt and FunctionCall nodes contain a semantic field called myDef, which points to the
ProcDecl in which the procedure was declared. This diagram shown the myDef field pointing up to a
ProcDecl node, somewhere higher up in the AST.

A PCAT program may contain several procedure declarations with the same name. For example, a
program might legally contain several procedures named foo. Any one invocation of “foo” must refer to
exactly one of the procedure declarations for foo. During type-checking, the compiler figured out which
invocation applied to which version of foo. This information was saved in the myDef field at that time,
so there is a pointer from the invocation node back to the correct ProcDecl node.

FunctionCall
id

args
myDef

Argument
next
expr
mode

Argument
next
expr
mode

Argument
nullnext

expr
mode

“foo”

...2*i... ...j... ...k+1...

ProcDecl
id

formals
reType

body
next

lexLevel

“foo”

AssignStmt
next

lValue
expr

•••

...x...

Date Printed: 1/26/06 Page 46

Array Constructors
The PCAT language includes a grammatical construct—the “array constructor”—to create an array.
Here are the relevant syntax rules:

Expression → ...
→ ID ArrayValues
→ ...

ArrayValues → '{{' ArrayValue { ',' ArrayValue} '}}'
ArrayValue → [Expression of] Expression

Here is an example which contains an array constructor on the right-hand side of each assignment
statement:

type MyArray is array of real;
var a, b, c: MyArray := nil;
...
a := MyArray {{ 1.1, 2.2, 3.3, 4.4 }};
b := MyArray {{ 1000 of –9.999 }};
c := MyArray {{ 4.4, 100 of 5.5, 6.6, 7.7, 100 of 8.8, 9.9 }};

This version of PCAT uses {{ and }} instead of { and } for array constructors to make the parsing easier
and to avoid grammatical confusion with record constructors, which use { and }.

An array constructor is an expression that, when executed, will “create” and array and initialize it. In
our implementation, arrays will be placed on the heap, not in the activation record. So by “create an
array”, we mean that a large block of memory will be allocated on the heap when this expression is
executed.

The sequence of ArrayValues is used to provide initial values of the array elements and to indicate the
size of the array. In the first array constructor, the array will contain four elements, and will be
initialized to the four real values listed. Once created, an array’s size will not change although we can
update the elements with statements like this:

a[2] := a[3] * 123.456;

In order to accommodate large arrays, each initial value may be given a count. In the second array
constructor, the array will have size 1000 and each element will be initialized to –9.999. The expression
to the left of the “of” keyword will be an integer expression. In this example, the expression is a simple
integer, but it can be something more complex that must be computed at runtime, as in:

b := MyArray {{ i*foo(j*2) of –9.999 }};

The last array constructor in the example shows that there can be a mix of the above two forms. Some
initial value expressions have counts and some do not. The size of this array will be:

1 + 100 + 1 + 1 + 100 + 1 = 204

Date Printed: 1/26/06 Page 47

Array constructors are represented with ArrayConstructor and ArrayValue nodes.

 static class ArrayConstructor extends Expr {
 String id;
 ArrayValue values;
 TypeDecl myDef; // Not used until proj 5
 }
 static class ArrayValue extends Node {
 ArrayValue next;
 Expr countExpr;
 Expr valueExpr;
 ...
 }

The id field in an ArrayConstructor node names the type, e.g., “MyArray”. The myDecl field points
to the TypeDecl in which this type was defined. The values field points to a linked list of ArrayValue
nodes.

There will be one ArrayValue node for each initial value expression in this list. If there is a “count
expression” then countExpr will point to it; if there is no count, then countExpr will be null.

For example, the following assignment statement:

d := MyArray {{ 100 of 1.1, 2.2, 500 of 3.3 }};

would be represented as follows:

Date Printed: 1/26/06 Page 48

Record Constructors
The PCAT language includes a grammatical construct—the “record constructor”—to create a record.
Here are the relevant syntax rules:

Expression → ...
→ ID FieldInits
→ ...

FieldInits → '{' ID ':=' Expression { ';' ID ':=' Expression} '}'

Here is an example which contains a record constructor on the right-hand side of the assignment
statement:

type MyRecord is record
 f1: integer;
 f2: real;
 f3: boolean;
 end;
var r: MyRecord := nil;
...
r := MyRecord {f1:=123; f2:=3.1415; f3:=false};

ArrayConstructor
id

values
myDef

ArrayValue
next

countExpr
valueExpr

“MyArray”

...1.1... ...2.2... ...3.3...

AssignStmt
next

lValue
expr

...d...

ArrayValue

null

next
countExpr
valueExpr

ArrayValue
nullnext

countExpr
valueExpr

...100... ...500...

Date Printed: 1/26/06 Page 49

When a record constructor expression is executed at runtime, it will create the record and initialize all
the fields in it. Our implementation will allocate records on the heap, not in the activation stack frame.
A variable like r will actually be a pointer to the record, much the way Java works.

The record constructor must have the same fields as the corresponding type, but they may be listed in a
different order. For example, the above assignment could be rewritten as follows, with no change in
meaning:

r := MyRecord {f2:=3.1415; f3:=false; f1:=123};

Each record constructor expression will be represented with a single RecordConstructor node and a
linked list of FieldInit nodes.

 static class RecordConstructor extends Expr {
 String id;
 FieldInit fieldInits;
 TypeDecl myDef; // Not used until proj 5
 }
 static class FieldInit extends Node {
 FieldInit next;
 String id;
 Expr expr;
 FieldDecl myFieldDecl; // Not used until proj 6
 }

For example, this assignment statement:

r := MyRecord {f2:=3.1415; f3:=false; f1:=123};

would be represented as:

Date Printed: 1/26/06 Page 50

Array Dereferencing
Array elements are accessed with bracket notation like this:

a[i] := a[j+1];

An array dereference, such as a[i], is an L-Value, not an expression. Here are the relevant grammar
rules:

LValue → ID
→ LValue '[' Expression ']'
→ ...

An array dereference is represented with an ArrayDeref node:

 static class ArrayDeref extends LValue {
 LValue lValue;
 Expr expr;
 }

As an example

RecordConstructor
id

fieldInits
myDef

FieldInit
next

id
expr

myFieldDecl

“MyRecord”

...3.1415...

AssignStmt
next

lValue
expr

...r...

“f2”

FieldInit
next
id

expr
myFieldDecl

false
“f3”

FieldInit
nullnext

id
expr

myFieldDecl

...123...
“f1”

Date Printed: 1/26/06 Page 51

a[j+1]

would be represented like this:

Notice that the grammar rules for LValue are left recursive, and allow such things as:

b[5][j+1]

This is perfectly legal, assuming that b is an array of arrays. Although parentheses cannot be used
within L-Values in PCAT, we can use them here to see how this L-Value is parsed:

(b[5]) [j+1]

Here is an appropriate declaration of b.

type MyIntArr is array of real;
 ArrOfArrys is array of MyIntArr;
var b: ArrOfArrys := ...;

BinaryOp
Token.PLUSop

expr1
expr2
mode INTEGER_MODE

IntegerConst
1iValue

Variable
“j”

LValue
lValue

id
myDef

currentLevel

ArrayDeref
lValue

expr

Variable
“a”id

myDef
currentLevel

Date Printed: 1/26/06 Page 52

In representing something like b[5][j+1], notice that ArrayDeref counts a field called lValue and notice
that ArrayDeref is itself a kind of LValue.

The L-Value b[5][j+1] would be represented as:

Record Dereferencing
The fields in records are accessed with “dot” notation like this:

r1.age := r2.age;

A record dereference, such as r1.age, is an L-Value, not an expression. Here are the relevant grammar
rules:

LValue → ID
→ LValue '.' ID
→ ...

BinaryOp
Token.PLUSop

expr1
expr2
mode INTEGER_MODE

IntegerConst
1iValue

Variable
“j”

LValue
lValue

id
myDef

currentLevel

ArrayDeref
lValue

expr

Variable
“b”id

myDef
currentLevel

ArrayDeref
lValue

expr

IntegerConst
5iValue

Date Printed: 1/26/06 Page 53

A record dereference is represented with a RecordDeref node:

 static class ArrayDeref extends LValue {
 LValue lValue;
 String id;
 FieldDecl myFieldDecl; // Not used until proj 6
 }

As an example

r1.age

would be represented as:

Notice that the lValue field of RecordDeref can point to any L-Value. For example, an ArrayDeref is
an LValue, so the following is legal PCAT, assuming that a is an array of records:

a[i+1].age

Here are some appropriate declarations:

type MyRec is record
 ss: integer;
 age: integer;
 married: boolean;
 end;
type MyArr is array of MyRec;
var a: MyArr := ...;

RecordDeref
lValue

id
myFieldDecl

Variable

“age”

id
myDef

currentLevel

“r1”

Date Printed: 1/26/06 Page 54

Below is the AST representation of

a[i+1].age

BinaryOp
Token.PLUSop

expr1
expr2
mode INTEGER_MODE

IntegerConst
1iValue

Variable
“i”

LValue
lValue

id
myDef

currentLevel

RecordDeref
lValue

id
myFieldDecl

Variable

“age”

id
myDef

currentLevel

ArrayDeref
lValue

expr

“a”

Date Printed: 1/26/06 Page 55

Read Statements
Here is the grammar rule for the “read” statement:

Statement → ...
→ read '(' LValue {',' LValue} ')' ';'
→ ...

The “read” statement takes a list of variables, not expressions. In other words, the statement uses L-
Values, since we will need to store an input value in memory at runtime.

A “read” statement is represented using a ReadStmt nodes a linked list of ReadArg nodes.

 static class ReadStmt extends Stmt {
 ReadArg readArgs;
 }
 static class ReadArg extends Node {
 ReadArg next;
 LValue lValue;
 int mode; // Not used until proj 6
 }

RecordConstructor
id

fieldInits
myDef

FieldInit
next

id
expr

myFieldDecl

“MyRecord”

...3.1415...

AssignStmt
next

lValue
expr

...r...

“f2”

FieldInit
next
id

expr
myFieldDecl

false
“f3”

FieldInit
nullnext

id
expr

myFieldDecl

...123...
“f1”

Date Printed: 1/26/06 Page 56

In PCAT, the program can only read in values of type integer and real. Here is an example:

var x: real: = 0.0;
 i,j,k: integer: = 0;
...
read (i, j, x, k);

This statement will represented using a linked list of 4 ReadArg nodes. The mode field in a ReadArg
node will be either INTEGER_MODE or REAL_MODE, to indicate whether we’ll need to look for a
real or integer value at runtime.

Write Statements
Here are the grammar rules for “write” statements:

Statement → ...
→ write WriteArgs ';'
→ ...

WriteArgs → '(' WriteExpr {',' WriteExpr} ')'
→ '(' ')'

WriteExpr → STRING
→ Expression

A “write” statement takes a list of expressions and strings. Here is an example:

var x: real: = 0.0;
 i: integer: = 0;
 b: boolean: = 0;
...
write ("i = ", i, "x = ", x, "b = ", b);

A “write” statement is represented using a WriteStmt node, which will point to a linked list of
Argument nodes.

 static class WriteStmt extends Stmt {
 Argument args;
 }
 static class Argument extends Node {
 Argument next;
 Expr expr;
 int mode; // Not used until proj 6
 }

Date Printed: 1/26/06 Page 57

When generating code, we’ll need to know how to print each value out. The node field in the
Argument nodes will tell us. For WriteStmts, the mode field will be either INTEGER_MODE,
REAL_MODE, BOOLEAN_MODE, or STRING_MODE.

