
Date Printed: January 21, 2006 1

PCAT Delta
Porter’s Version vs. Tolmach’s Version

Harry Porter
January 21, 2006

Introduction
There are several small differences between the PCAT language used in Andrew Tolmach’s
Compiler course and the version used in my class. These differences are discussed here.

The abbreviation “T&L” refers to Tolmach and Li’s language, as documented in [The PCAT
Programming Language Reference Manual, Andrew Tolmach and Jingke Li, revised October 8,
2004].

Uppercase/Lowercase Keywords
The keywords in T&L are all uppercase. Porter uses the same keywords, but they are lowercase.

T&L Porter
 BEGIN begin
 PROCEDURE procedure
 etc.

This difference is purely lexical and will not affect the back-end.

The “ELSIF” Keyword
There is one difference in the set of keywords. T&L spells the following keyword differently:

T&L Porter
 ELSIF elseif

This difference is purely lexical and will not affect the back-end.

Date Printed: January 21, 2006 2

Punctuation for Array Initialization
T&L uses braces for array initialization. Porter uses [< and >] for array initialization.

Here is an example:

T&L
 VAR a: MyArray := MyArray { 7, 9, 3 OF 11, 13, 15 };

Porter
 var a: MyArray := MyArray {{ 7, 9, 3 of 11, 13, 15 }};

In Porter, there are two lexical tokens, not in T&L. Each of these tokens, “{{” and “}}”, consists
of two characters, somewhat like the := and <> tokens used for assignment and not-equal.

Punctuation Tokens in Porter
 :=
 +
 -
 *
 /
 <
 <=
 >
 >=
 =
 <>
 :
 ;
 ,
 .
)
 (
 [
]
 {
 }
 {{  Not in T&L
 }}  Not in T&L

This difference is purely lexical and will not affect the back-end.

Date Printed: January 21, 2006 3

Associativity of Relational Operators
In T&L, the relational operators are not associative, while in Porter they are left-associative.

T&L
 (a = b) = c
 a = b = c  Syntax error

Porter
 (a = b) = c
 a = b = c  Okay; means the same

This makes a slight difference when using expressions involving = (equal) and <> (not equal), but
note that in the case of the comparison operators (<, <=, >=, >), expressions like

 a < b < c
 (a < b) < c
 a < (b < c)

are semantically incorrect anyway.

This difference is purely grammatical and will not affect the back-end.

Recursive Types
Consider two mutually recursive type T1 and T2. T&L uses the keyword AND, while Porter does
not.

T&L
 TYPE
 T1 IS RECORD

val: INTEGER;
next: T2;

 END;
 AND

 T2 IS RECORD
val: INTEGER;
next: T1;

 END;

Porter
 type
 T1 is record

val: integer;
next: T2;

 end;
 T2 is record

val: integer;
next: T1;

 end;

Date Printed: January 21, 2006 4

In Porter, a single body may have several “type” declarations and each may define several type
names. Any type name may be defined in terms of any other type name in the same body.

For example:

Porter
 type
 S1 is record

val: integer;
next: S2;

 end;
 S2 is record

val: integer;
next: S3;

 end;
 type
 S3 is record

val: integer;
next: S4;

 end;
 S4 is record

val: integer;
next: S1;

 end;

is semantically equivalent to:

T&L
 TYPE
 S1 IS RECORD

val: INTEGER;
next: S2;

 END;
 AND
 S2 IS RECORD

val: INTEGER;
next: S3;

 END;
 AND
 S3 IS RECORD

val: INTEGER;
next: S4;

 END;
 AND
 S4 IS RECORD

val: INTEGER;
next: S1;

 END;

Date Printed: January 21, 2006 5

In the Abstract Syntax Tree representation used by Porter, the grouping of type declarations is lost
and the following two examples would result in the same internal representation:

Source Code #1
 type
 T1 is record
 val: integer;
 next: T2;
 end;
 T2 is record
 val: integer;
 next: T1;
 end;

Source Code #2
 type
 T1 is record
 val: integer;
 next: T2;
 end;
 type
 T2 is record
 val: integer;
 next: T1
 end;

Recursive Procedures
A similar situation exists when recursive procedures are defined. In T&L the AND keyword is
used, while it is implicit in Porter.

T&L
 PROCEDURE
 foo () IS BEGIN ... bar() ... END;

 AND
 bar () IS BEGIN ... foo() ... END;

Porter
 procedure
 foo () is begin ... bar() ... end;
 bar () is begin ... foo() ... end;

In Porter, the “and” is implicit and procedures can be mutually recursive whenever they are defined
in the same body. Consequently, in Porter, the “procedure” keyword is often repeated; the above
example would often be coded as:

Date Printed: January 21, 2006 6

Porter
 procedure foo () is begin ... bar() ... end;
 procedure bar () is begin ... foo() ... end;

In the Abstract Syntax Tree representation used by Porter, the grouping of procedures is lost and
the following two examples would result in the same internal representation:

Source Code #1
 procedure
 foo () is begin ... bar() ... end;
 bar () is begin ... foo() ... end;

Source Code #2
 procedure foo () is begin ... bar() ... end;
 procedure bar () is begin ... foo() ... end;

Repetition of VarDecls, TypeDecls, and ProcDecls
In Porter, the grammar for declarations allows one-or-more occurrences; the rules are:

Declaration → var VarDecl { VarDecl }
→ type TypeDecl { TypeDecl }
→ procedure ProcedureDecl { ProcedureDecl }

In T&L, the grammar rules are slightly different, but effectively generate the same thing:

declaration → VAR var-decls
→ TYPE type-decls
→ PROCEDURE procedure-decls

var-decls → var-decl { var-decl }
type-decls → type-decl { type-decl }
procedure-decls → procedure-decl { AND procedure-decl }

Date Printed: January 21, 2006 7

Terminology
The non-terminals in the T&L grammar are similar to the non-terminals used in Porter, but there are
a few minor differences in spelling.

T&L Porter
 program Program
 body Body
 declaration Declaration
 var-decls
 var-decl VarDecl
 type-decls
 type-decl TypeDecl
 procedure-decls
 procedure-decl ProcedureDecl
 typename TypeName
 type CompoundType
 component FieldDecl
 formal-params FormalParams
 fp-section FormalSection
 statement Statement
 write-params WriteArgs
 write-expr WriteExpr
 expression Expression
 lvalue LValue
 actual-params Arguments
 record-inits FieldInits
 array-inits ArrayValues
 array-init ArrayValue
 number Number
 unary-op UnaryOp
 binary-op BinaryOp

Porter refers to the components in a record as “fields” while T&L refers to the same concept as
“components.”

Porter refers to the initializing expressions in a record as “FieldInits” while T&L refers to the
same concept as “record-inits.”

Porter uses the term “arguments”, while T&L uses the term “actual-params.”

