
CS-321 Compiler Design

Page 1

Programming Project #6: Type Checking

Due Date: Tuesday, November 29, 2005, Noon

Overview
In this project, you will modify your Checker.java file to catch all remaining semantic errors and
modify the abstract syntax tree as necessary for code generation.

Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p6

Checker.java
You created this file in project 5; you will modify it in this project.

SymbolTable.java
This file is has been changed to comment-out the print statements, which were used in
testing the previous project.

Ast.java
This file is unchanged, but we will use a class and some fields that were previously ignored.

PrintAst.java
This file has been modified to include printing of the new fields.

Main.java
Lexer.class
Parser.class
Token.java
StringTable.java
FatalError.java
LogicError.java
PrettyPrint.java
makefile
go
run

These files are unchanged.

runErr
This file is new. It is like run, but it displays only the stderr output (the error messages).
It does not display the AST. It is used for tests that have semantic errors. When there are
semantic errors, we will ignore the AST altogether. We care only that you print the correct
message.

CS-321 Compiler Design

Page 2

tst
runAll

Same as before, but altered for this project.

Main.jar
The new “black box” code, which was used to produce the output files in tst.

Overview
This project has two aspects: (1) to fill in some additional information in the abstract syntax tree
data structure, and (2) to detect all remaining semantic errors in the source program. The two tasks
are related and best done in parallel.

For example, one check is to determine whether RETURN statements have a value for non-void
procedures and no value for void procedures. We also need to link the ReturnStmt node to the
correct ProcDecl node. These two actions are best programmed together at the same time.

In this project, you will modify your Checker.java file.

The driver class Main.java is unchanged, but the code to print the AST has been modified to print
the new fields in the AST that are being filled in during this project.

Changes to “Ast.java”
A class called IntToReal has been added to deal with integer-to-real conversions within
expressions.

A new field called myLoop has been added to ExitStmt nodes.

A new field called myProc has been added to ReturnStmt nodes.

A new field called myFieldDecl has been added to FieldInit and RecordDeref nodes.

A new field field called mode has been added to the several nodes. The mode will be an integer
and we’ll use the following different values:

1 = INTEGER_MODE This data will be an integer
2 = REAL_MODE This data will be a floating number
3 = STRING_MODE This data will be a (pointer to a) string
4 = BOOLEAN_MODE This data will be a Boolean value

You can use these symbolic names (always a good practice!) by adding the following lines to your
Checker class. (Recall that “static final” just means that this variable is a constant.)

 static final int INTEGER_MODE = 1;
 static final int REAL_MODE = 2;
 static final int STRING_MODE = 3;
 static final int BOOLEAN_MODE = 4;

The mode field will be set to indicate what kind of data is being manipulated. The field mode has
been added to these classes:

CS-321 Compiler Design

Page 3

ReadArg
BinaryOp
UnaryOp
Argument

The “mode” Field
In the compiled assembly code, we will only be manipulating integers, reals, and pointers. Arrays
and records will not be manipulated directly; instead we will manipulate them with sequences of
instructions that manipulate integers, reals, and pointers. At runtime, our type system will be very
simple: just that of the target machine. However, we will need to keep information about the
“machine type” of the data. This is what the mode field tells us.

During code generation, we will only need to know the mode; other type information will be
completely ignored.

The mode field reflects the sort of data that is being manipulated by the various constructs:

ReadArg the size/type of data to be read in (Int or Real, only)
BinaryOp the size/type of the result (Int or Real, only)
UnaryOp the size/type of the result (Int or Real, only)
Argument the size/type of the argument in a WRITE statement

In our implementation for the SPARC we will represent and manipulate TRUE exactly the same
way we represent the integer 1. FALSE will be treated as the integer 0.

Therefore, logical operations like AND and OR will use mode=INTEGER_MODE.
BOOLEAN_MODE and STRING_MODE are only used for the arguments of WriteStmts.

It is mandatory that the mode field be filled in correctly for programs without errors. It is much
less important for programs with errors, since the mode field is not needed until code generation.
When there are semantic errors in the program, the compiler will terminate before the mode field is
ever looked at.

Testing PCAT Programs With Semantic Errors
Whenever our compiler detects any errors before code generation, we will abort and no attempt at
code generation will be made. Therefore, we don’t really care what you do to the AST.

For tests on PCAT programs that contain semantic errors, we will not even look at the AST. You
are required only to print the correct error messages. To facilitate this, there is a new shell script
called runErr. It is just like run, except that it performs the diff on only the stderr output. The
stdout output (which is where we print the AST) is ignored.

The runAll script calls run or runErr, as appropriate for each of the tests.

Changes to ExitStmt and ReturnStmt Nodes
There is a new field called myLoop in ExitStmt nodes. This field should be set to point to the
innermost ForStmt, LoopStmt, or WhileStmt that encloses this EXIT. During code generation,
labels will be associated with the looping statements and the names of these labels will be stored in

CS-321 Compiler Design

Page 4

the ForStmt, LoopStmt, or WhileStmt node. When generating code for an EXIT, we can follow
the myLoop pointer to find the name of the label to which to branch.

Likewise, the field myProc in ReturnStmts should be set to point to the ProcDecl for the
procedure containing the RETURN. RETURN statements must not occur in the main procedure
body.

To set the myLoop and myProc field, you may wish to consider adding a new parameter to the
“check” functions that are related to statements. For example, you may have:

checkStmts (..., Ast.Stmt currentLoop, Ast.ProcDecl currentProc)
checkIfStmt (..., Ast.Stmt currentLoop, Ast.ProcDecl currentProc)
...etc...

The idea is to pass these parameters down through the various “check” invocations until we reach
a checkExitStmt() or checkReturnStmt(), where they will be used. If there is no surrounding
loop, the currentLoop argument will be NULL. If there is no surrounding procedure, the
currentProc argument will be NULL.

Within the checkExitStmt() method, we can then test currentLoop against NULL and produce
the appropriate error message.

If we are in the main program body, then currentProc will be NULL. Within the
checkReturnStmt() method, we will see this NULL and print an error message.

Note that not all “check” routines will need these parameters. For example, checkReturnStmt()
doesn’t need the currentLoop argument, so it is pointless to pass it in. Likewise, the
checkWhileStmt() doesn’t need the currentLoop argument since it will be supplying itself as the
currentLoop to the “check” routines it calls. Other, non-statement “check” routines (like
checkBinaryOp()) don’t need these parameters since they can not contain embedded EXIT or
RETURN statements.

Coercing Integers to Reals
In certain places, a coercion from integer to real must be inserted. For example:

2.5 + (3 * 4)

should be changed by inserting a call to a built-in routine named intToReal():

2.5 + intToReal (3 * 4)

To represent a call to this built-in routine, we will use a new class called Ast.IntToReal. This class
contains a single field (expr), which will point to the sub-expression that needs to be converted.

[A second design option would have been to use a UnaryOp node, and to define a new kind of
operation, giving PLUS, MINUS, NOT, and INT_TO_REAL. A third design option would have
been to insert a FunctionCall node, but this would get tricky since we would need a corresponding
ProcDecl.]

In the above example, we will first allocate a new IntToReal node. Then we will set the expr field
of the IntToReal to point to the sub-expression 3*4 (i.e, to the value of the expr2 field in the “ + ”

CS-321 Compiler Design

Page 5

BinaryOp node). Next, we will modify the expr2 field of the “+” BinaryOp to point to the new
IntToReal node.

Note that this is one case where we are actually changing—rather than simply adding to—the AST.
Normally, I would really rather not change information in the AST, since it risks introducing bugs
in previously tested code, but in this case, I think this approach is best.

Basic, Built-in Types
During type-checking, we’ll need to work with 5 basic types:

integer
real
boolean
_string
_niltype

Be sure to create just one copy of each string (by entering them into the StringTable), since we’ll
be doing == comparisons in typeEquals. You’ll need to save references to these strings (using
variables with names like “integerString” and “nilTypeString”) and use those later.

The last two types begin with an underscore, which makes them impossible for the PCAT
programmer to use directly. Something like this:

var i: _string := ...;

would be rejected by the Lexer / Parser since identifiers cannot contain the underscore character.

In PCAT, strings can appear in only one place: as arguments in the WRITE statement, e.g.,

write (“The value is”, x);

We have string values and a string type, but no variables of type string and no operators on string
values.

The type of nil is a little tricky. We can use nil as a legal value of any record type or any array
type. The following is legal:

type MyRec is record ... end;
 MyArray is array of integer;
var r: MyRec;
 a: MyArray;
...
r := nil;
a := nil;

The value “nil” is compatible with every RECORD and ARRAY, but we can’t give it any single
RecordType or ArrayType, since that would make it incompatible with all other RecordTypes
and ArrayTypes.

In order to type-check expressions and assignments, we need to give nil a special type, which we
will call “_nilType”. This is the type of the nil value. Our type checking rules will handle this
type specially.

CS-321 Compiler Design

Page 6

This new type needs to be handled a little differently from other types, since it is “assignment
compatible” with any RecordType or ArrayType, but type-equal to no other type except itself.

Hints on Type-Checking
Type-checking in PCAT is relatively straightforward, since the types of expressions can be
synthesized from the bottom, upward. To this end, you should modify all of the “check” routines
concerned with expressions (e.g., checkExpr, checkBinaryOp, etc.) to return the type of the
expression.

Whenever you check an expression for semantic correctness, the check method will end by
returning a pointer to an Ast.TypeName node representing the type of that expression.

Each L-Value also has a type and you’ll need to take a look at it. (For example, in an assignment
statement, you’ll need to see if the type of the RHS expression matches the type of the LHS L-
Value.) So you’ll also need to return an Ast.TypeName from all methods that check L-values (i.e.,
checkLValue, checkArrayDeref, and checkRecordDeref).

If the expression or L-Value contains errors, the check methods can simply return NULL.
Subsequently, when the type is used, you’ll need to watch for the possibility of a NULL. If a type
is NULL, it indicates that there was some error detected earlier, so the best thing to do ignore the
NULL and keep going without printing any additional error message.

I recommend that you create the following support routines, which will come in handy during the
type-checking. For example, typeEquals(t1,t2) will return TRUE iff its two arguments are the
same type.

boolean typeEquals (Ast.TypeName t1, Ast.TypeName t2)
This method is passed two types. It returns TRUE iff the two types are the same.
Either argument could be null, indicating a previous error of some sort.
If so, we just return true, in an attempt to reduce further errors. If either type has
a definition, then we must compare definitions. If neither type has a definition then
return true iff their names are equal. (If a type has no definition, then either it is a
basic type or there was an “undefined name” error earlier; in either case
comparing names is the thing to do.)

boolean assignOK (Ast.TypeName to, Ast.TypeName from)
This routine is passed two types. It returns TRUE iff it is legal to assign a value
from type FROM to type TO.

Ast.CompoundType getCompoundType (Ast.TypeName t)
This routine is passed a typename. If it has a definition, then return a pointer to
the ArrayType or RecordType. Else return null.

boolean needCoercion (Ast.TypeName to, Ast.TypeName from)
This routine is passed two types. It returns true if from=”integer” and to=”real”.

Ast.Expr insertCoercion (Ast.Expr p)
This routine allocates an IntToReal node, makes it point to p, and returns a pointer
to the new IntToReal node.

CS-321 Compiler Design

Page 7

It is often the case that you need to check whether it is okay to assign from one type to another.
For example, here is the code I used to check assignment statements. Similar code occurs
elsewhere.

 void checkAssignStmt (Ast.AssignStmt t)
 throws FatalError
 {
 Ast.Type toType = checkLValue (t.lValue);
 Ast.Type fromType = checkExpr (t.expr);
 if (assignOK (toType, fromType)) {
 if (needCoercion (toType, fromType)) {
 t.expr = insertCoercion (t.expr);
 }
 } else {
 semanticError (t.expr, "In assignment, type of LHS
 is not compatible with type of RHS");
 }
 }

The Difference Between the RecordType and RecordConstructor Nodes
Consider the following program:

1 program is
2 type t is record
3 f1: integer;
4 f2: t;
5 end;
6 var r: t := nil;
7 begin
8 r := t { f1:=123; f2:=nil };
9 end;

The type on lines 2-5 will be represented using RecordType and FieldDecl nodes. The
constructor on line 8 will be represented using RecordConstructor and FieldInit nodes.

The first is a type. The second is a sort of literal expression that will evaluate to a record value.
More precisely, a record constructor will allocate a chunk of memory on the heap and will result in
a pointer, which will then be copied into the variable r. Record variables (such as r) and array
variables will always be pointers and will always be 32-bits wide in our implementation, although
the record or array will often be much larger.

The “myFieldDecl” Field
A new field called myFieldDecl has been added to FieldInit and RecordDeref nodes. You must
be set this field to point back to the FieldDecl node that is being referenced.

Consider this program:

CS-321 Compiler Design

Page 8

1 program is
2 type MyRec is record
3 f: integer;
4 end;
5 var r: MyRec := nil;
6 begin
7 r := MyRec { f := 123 };
8 r.f := 456;
9 end;

In the record type “MyRec”, there is a single field “f”. The type “MyRec” will be represented
by a RecordType node, which will point to a linked list containing a single FieldDecl node, which
will represent the field “f” (from line 3). In line 7, we see code to construct a new record and
initialize field “f”. This “f” is the same “f” as on line 3, so we will need a pointer back to the
node created when this field was first introduced. The record constructor in line 7 will be
represented by a RecordConstructor node, which will point to a linked list containing a single
FieldInit node, which will represent the assignment to field “f”. We have added a field (called
myFieldDecl) to FieldInit nodes; you must set it to point back to the FieldDecl node created
during the type declaration on line 3.

Likewise, in line 8 we are setting a field called “f”, which is the same field as mentioned on line 3,
so we will need a pointer back to the FieldDecl node from line 3. The l-value “r.f” is represented
with a RecordDeref node; a new field (myFieldDecl) has been added to RecordDeref . It must
be set to point back to the FieldDecl node from line 3.

Later, in CS-322, we will assign an offset to each field within a record type. We will store these
offsets in the FieldDecl nodes associated with that RecordType. Then, when we go to generate
code for line 8, we will need to generate a “move” instruction. At the time we generate that
instruction, we will need to know the offset of field “f”. We will obtain it by following the
myFieldDecl pointer back to the correct FieldDecl node.

The Order of Processing in “checkBody()”
Here is the order that things are done in checkBody()...

 boolean checkBody (Ast.Body body, Ast.ProcDecl currentProc)
 throws FatalError
 {
 enterTypeDecls (body.typeDecls);
 checkTypeDecls (body.typeDecls);
 enterProcDecls (body.procDecls);
 enterAndCheckVarDecls (body.varDecls);
 checkProcDecls (body.procDecls);
 return checkStmts (body.stmts, null, currentProc);
 }

The routine checkTypeDecls() fills in the myDef fields in TypeName nodes. For example, when
we check the following:

 type t1 is array of t2;

the checkTypeDecls() routine will look up t2 and link the TypeName node to point to t2’s
definition. This must be done before we check the variable declarations, since we may very well
need this information. For example, the same program might also contain:

CS-321 Compiler Design

Page 9

 var x: t1 := t1 {{ A, B, C }};

In order to check whether this declaration is legal, we’ll need to verify that A, B, and C have type t2.
In order to check this, the myDef fields of TypeNames t1 and t2 must already be filled in. This is
why we must check the type declarations before we check the variable and procedure declarations.

The Types of Basic Values
As we said earlier, whenever you check an expression, you’ll need to return the type of the
expression. What happens when you check an integer constant? You’ll need to return a pointer to
a TypeName node whose id is “integer” and whose myDef is NULL.

Since this will happen a lot, it makes sense to create one such TypeName node during initialization
and save a pointer to it. Then, whenever an IntegerConst is encountered, you can just return this
pointer.

It would work fine to create a new TypeName node each time you need one, but it would be less
efficient.

Can this approach be used to deal with RealConst, StringConst, BooleanConst, and NilConst
nodes, too?

Optional Types in VAR Declarations
Consider the following program:

 program is
 var x : integer := 100;
 var y := 200;
 ...

According to the syntax, the type is optional. If it is supplied (as it is for x), then the type of the
initializing expression must be “assignment compatible” with the type supplied; otherwise it is an
error.

In the case of variable y, there is no type provided. But later, when we are checking expressions that
use variable y, we will need to know its type, so we can type-check those expressions. (To get y’s
type when checking expressions, we will follow the Variable’s myDef field to the VarDecl and
then we will look at the typeName field. This field must not be NULL at that time.) Therefore, we
will have to fill in the typeName field with an appropriate node when we check the VarDecl.

So, if the type is not supplied in the VarDecl, the typeName field must be filled in. Here’s how.
First, call checkExpr() to check the initializing expression. This will return its type. (In this
example, we have “200” so checkExpr() will return a pointer to a TypeName node for
“integer”.) Then we must fill in the typeName field of the VarDecl accordingly.

Finally, if the initializing expression is “nil”, the type is required. You’ll have to issue an error if
the type is missing. Also, we must check that the type is either a RecordType or an ArrayType.

CS-321 Compiler Design

Page 10

 program is
 var a := nil; (* Error *)
 var b : integer := nil; (* Error *)
 var c : MyRec := nil; (* OK *)
 var d : MyArray := nil; (* OK *)
 ...

Testing
I understand that some students are using only the tst/ files that I am providing. Consider writing
your own test files, especially as you begin this project. You do not necessarily need to create a
new file; you can type

java Main

and then type small PCAT programs directly in through standard input.

I have designed the test files to test working programs; it may be easier if you create your own files
for debugging. (Keep in mind that “testing” and “debugging” are different.) This may be
especially helpful in the beginning, when there will be lots of differences between your program and
the black box output.

For example, just about the last thing I did when I created Checker.java was set the mode fields.
(Setting the mode field is almost trivial after all the other type-checking and coercions are in place.)
Since printAst() prints the mode all over the place, it will tend to flag every line of your output as
being wrong until you begin setting the mode field. If you are not careful, you might spend a lot of
unnecessary effort manually comparing output files.

Another difficulty is that some test files are quite lengthy. For example, binaryOK.pcat and
binaryErr.pcat attempt to be exhaustive in testing all cases. Every time they are run they produce
a lot of output and that may become a nuisance.

When you test your program on someone else’s test data, there is some danger that you are
modifying your code to satisfy the test data instead of creating code that is intrinsically correct.
There is a natural tendency to focus on the differences between your output and the black box
output, and to modify your code in any expedient way to get the outputs to agree.

Instead, you should debug your program on you own test files first and then, after it has been
debugged, you should try it on the black box files. Then, if it works correctly on the black box files
on the first try, you can be almost positive that your program is correct. If it fails, it is probably
because of a conceptual misunderstanding, which you can focus on.

The output from the black box tends to be very lengthy and hard for a human to read. During
debugging, you may wish to make use of prettyPrintAst() to print out selected portions of your
AST. Feel free to modify PrettyPrint.java however you like. For example, you may add print
statements to print out certain values at different points in your tree. This may be easier than
wading through the output from the black box, which is designed more to evaluate the correctness
of your code.

Of course, if you modify PrettyPrint.java, be sure to re-copy the “standard” version of it and use
it for your final testing, since that is what will be used when the grader tests your program.

CS-321 Compiler Design

Page 11

“Last Executable Stmt In This PROCEDURE Is Not A RETURN”
In detecting this error, this is the sort of code we wish to disallow. foo is supposed to return an
integer but it exits without a RETURN; what value gets returned?

procedure foo (...) : integer is
 begin
 write ("What happens next?");
 end;
...
i := foo (...);

There are three possible approaches. (The Black Box program implements approach (3).)

(1) Don’t catch the error at all. Concentrate on more important errors. If the programmer happens
to leave out the RETURN, unpredictable results will occur at run-time (perhaps a core dump).
Very likely, what will be executed after the WRITE will depend on what random thing happens
to follow in RAM. It might be the beginning of another procedure or it might even be some
data, such as the string characters, which are not even executable instructions.

(2) Require the last statement in every procedure to be a RETURN. This will prevent any
unpredictable results from occurring, but may force the programmer to occasionally include a
RETURN statement that will never be executed. Consider the following examples:

procedure max (x,y: integer) : integer is
 begin
 if x<y then
 return y
 else
 return x
 endif;
 end;

procedure foo2 (...) : integer is
 begin
 loop
 write ("Harry Porter is wonderful.");
 end;
 end;

In the case of “max”, the last statement is an IF. Under option (2), the programmer would be
forced to insert a RETURN after the IF statement, even though it is clear that it can never be
executed. In the case of “foo2”, any statement after the (infinite) LOOP will never be
executed, yet the programmer would be forced to insert a RETURN that would never be
executed.

(3) Complain at exactly the correct places, saying that the RETURN is missing only when
execution could reach the end of the procedure without returning. This is tricky, though.
Consider this procedure:

CS-321 Compiler Design

Page 12

procedure foo3 (...) : integer is
 begin
 loop
 ...
 if ... then exit; end;
 ...
 end;
 end;

Unlike “foo2”, a RETURN is required and we need to print an error. But it is still more
complex. Consider this code:

procedure foo4 (...) : integer is
 begin
 loop
 ...
 while ... do
 ...
 if ... then exit; end;
 ...
 end;
 end;
 end;

In this code, a RETURN is not required, since the EXIT is not associated with the outermost
loop.

Option (3) is the trickiest to implement, but it is what a compiler really ought to do.

There are a few cases when we can see that execution will never reach a certain point, but this
depends on “meta-reasoning.” As an example, consider this code:

procedure foo5 (...) : integer is
 begin
 i := 0;
 loop
 if i<0 then exit; end;
 i := i + 1;
 end;
 (*here*)
 end;

In “foo5” our knowing that (*here*) will never be reached depends on our ability to reason about
runtime behavior and about the values of variables at runtime. In general, a compiler can not do
this; recall the theory of Turing machines and the halting problem. All production compilers will
handle programs like “foo5” by saying “RETURN required.” (However, some experimental
program verification systems are able to reason about programs in ways humans reason about them
and can identify some special cases.)

CS-321 Compiler Design

Page 13

Detection of “Dead Code”
“Dead code” is a statement in a PCAT program that can never be executed, regardless of which
branches get taken in IF and WHILE statements. Dead code is sometimes called “unreachable
code.” The Black Box program detects dead code and reports it as a semantic error, with these two
messages:

Dead code - execution can never reach this statement
Dead code - execution can never reach the bottom of this loop

Here is a simple example of dead code. The first “dead code” error message would be printed for
line 5.

1 procedure foo (...) is
2 begin
3 ...
4 return;
5 write ("Execution can never get here!!!");
6 end;

The second dead-code check asks whether execution can reach the bottom of a LOOP, WHILE, or
FOR statement. Something is obviously the matter with the following code, since the loop body
can never be repeated. The problem is that the EXIT statement will always be executed whenever
the body of the loop is executed. The bottom of the loop (i.e., the point right before the END—that
is, right before the branch back to the top) can never be reached.

1 while (i<10) do
2 i := i + 1
3 write ("Hello");
4 exit;
5 end;

The following files test dead-code detection.

deadErr.pcat
deadOK.pcat

The detection of dead-code is not as important as detecting other errors. After all, a program
containing dead-code will still run without problems or run-time errors. In many compilers, dead-
code is either not detected at all or a warning is issued (instead of an error). However, the presence
of dead-code almost always indicates a problem in the program and I feel it should elicit an error
message.

Please leave the detection of dead-code until you have caught the other errors, since it is rather
tricky.

Checking Flow of Control
To summarize, there are two errors are associated with “unreachable” or “dead” code:

CS-321 Compiler Design

Page 14

(1) Dead code - execution can never reach this statement
(2) Dead code - execution can never reach the bottom of this loop

and two errors associated with flow-of-control and RETURN statements:

(3) RETURN not allowed in the main program body
(4) Last executable stmt in this PROCEDURE is not a RETURN

The main body must not contain a RETURN statement and it is fairly easy to check for this. You
will be passing around currentLoop and currentProc parameters to many of the “check”
routines. The currentLoop will point to the surrounding LoopStmt, WhileStmt, or ForStmt, or
will be NULL if we are not nested within some kind of a looping statement. The currentProc will
point to the surrounding ProcDecl, when we are checking statements within a procedure and NULL
if we are in the main Body.

These will be used to link EXIT statements to their looping statements, and to link RETURN
statements to their ProcDecls. If, when checking a RETURN statement, you find that currentProc
is NULL, then you can conclude there is no surrounding procedure. This occurs exactly when the
statements occur in the main body. This takes care of message (3).

Every procedure must contain a RETURN statement. Or more precisely, the execution of every
procedure must end with the execution of a RETURN statement. Message (4) concerns the “flow-
of-control” within a statement list, and is best handled in conjunction with the detection of
unreachable code.

The key to detecting this error is to focus on the concept of execution “falling through.” Consider
some statement in the middle of a sequence of statements. Ask what happens after the statement is
executed. Will the next sequential statement following it be executed? In other words, will
execution “fall through” to the next statement? Or will execution jump to someplace else.

We can also talk about a sequence of statements “falling through” (instead of a single statement
falling through). A sequence of statements will fall through if execution falls through for the last
statement in the sequence.

In the case of RETURN statements and EXIT statements, execution will jump to someplace else. In
the case of ASSIGNMENT, CALL, READ, and WRITE statements, execution will fall through to
the next sequential statement. In the case of an IF statement, it is more complex. Whether
execution can fall through after the IF statement depends on the THEN statement sequence and the
ELSE statement sequence.

For example:

if (condition) then
 statement;
 statement;
 ...
 statement;
 RETURN;
else
 statement;
 statement;
 ...
 statement;
 RETURN;
end;

CS-321 Compiler Design

Page 15

Execution will obviously not fall through after this IF. But in the following:

if (condition) then
 statement;
 statement;
 ...
 statement;
 WRITE ("Hello");
else
 statement;
 statement;
 ...
 statement;
 RETURN;
end;

execution does fall through. The rule is: execution of the IF statement will fall through if execution
could fall through in either of the THEN and ELSE statement sequences. Execution will not fall
through only if execution does not fall through in both statement sequences.

This attribute of fallsThrough can be computed as a synthesized attribute, with the following
meaning:

TRUE = Execution might fall through
FALSE = Execution will definitely not fall through

Note that we are only concerned with whether execution “might” fall through. The compiler
cannot know exactly. Consider this code:

if (foo()) then
 WRITE ("Hello");
else
 RETURN;
end;

We can only know for sure whether execution falls through after this IF if we know what value
“foo()” returns. But the boolean condition can involve arbitrary computation and we must, in
general, execute it to know what it returns. The compiler cannot do this. So the compiler must
conclude fallsThrough=TRUE, since execution might fall through sometimes. (It is possible that
“foo()” always returns FALSE, so the ELSE statements will always be executed and execution will
always jump and never reach the statement after this IF, but the compiler can never know this.)

What about the looping statements? The FOR statement can certainly fall through, since the index
will eventually get incremented past the stopping value and execution will fall through to the
statement after the FOR.

for i := 1 to 100 do
 ...
end;

In the case of a WHILE, the compiler cannot make any assumptions about the boolean condition.
Therefore, we must assume that the WHILE will eventually fall through.

CS-321 Compiler Design

Page 16

while (boolean-condition) do
 ...
end;

In the case of a LOOP statement, whether it falls through depends on whether it contains an EXIT
statement. If the LOOP does not contain an EXIT, then there is no way execution can continue
after the LOOP

loop
 i := i + 1;
 write ("i = ", i);
end;
(* execution never gets here *)

If the LOOP contains an EXIT, then it is possible that the LOOP will fall through, although we
cannot be certain since we don’t know if the EXIT will actually be executed.

loop
 ...
 if (arbitrary-condition) then
 exit;
 end;
 ...
end;

Note that what we look for is whether the LOOP contains an EXIT and that EXIT is bound to that
LOOP. In the following code, you might think the LOOP contains an EXIT, but the EXIT really
belongs to the WHILE, so it doesn’t count. Execution cannot fall through after the LOOP (at least
because of this EXIT; there might be others that are not shown).

loop
 ...
 while
 ...
 exit;
 ...
 end;
 ...
end;

What want to compute and return the fallsThrough synthesized attribute for all statements and
statement lists. So we can make all of the routines

checkStmts ()
checkAssignmentStmt()
checkWriteStmt()
checkIfStmt()
...

return a boolean value. My code for checkIfStmt() looks like this:

CS-321 Compiler Design

Page 17

 boolean checkIfStmt (t...)
 ...
 boolean thenCanFallThru = true;
 boolean elseCanFallThru = true;
 ...
 thenCanFallThru = checkStmts (t.thenStmts, currentLoop,
 currentProc);
 elseCanFallThru = checkStmts (t.elseStmts, currentLoop,
 currentProc);
 ...
 return (thenCanFallThru || elseCanFallThru);
 }

I deal with LOOP statements as follows. First, I have a global variable called anyExitsSeen, which
is a boolean. The checkExit() routine simply sets anyExitsSeen to TRUE whenever it is called.
The difficulty occurs with nested WHILE, FOR, and LOOP statements. The idea is that for any of
these looping statements, you must save the old value of anyExitsSeen while you look at the inner
looping statement. After saving the old value, you can reset it to FALSE, just before calling
checkStmts() to process the loop-body statement sequence. After processing the statement
sequence, you must remember to restore the old value of anyExitsSeen before returning. In the
case of the LOOP statement, if anyExitsSeen got set to true when processing the loop-body
statement sequence, then the LOOP can fall through. Otherwise, it cannot. (Perhaps it is an infinite
loop or perhaps it contains a RETURN statement.)

Now, given that our routines compute and return the fallsThrough attribute, we can detect errors
(1), (2), and (4) easily.

To catch the error

(1) Dead code - execution can never reach this statement

we need to modify checkStmts(). This routine goes through each statement in a linked list. If one
statement does not fall through and it is not the last statement, then this error applies to the next
statement. If the last statement in the sequence falls through, then so does the entire statement
sequence.

To catch the error

(2) Dead code - execution can never reach the bottom of this loop

We need only add code within checkLoop(), checkWhile(), and checkFor(). This code will call
checkStmts() on the loop-body statement sequence. If it returns fallsThrough=FALSE, then we
have an error.

To catch the error

(4) Last executable stmt in this PROCEDURE is not a RETURN

all we need to do is look at the statement sequence in the BODY of a procedure. If it falls through,
we have an error. Before doing this test, we will need to know if we are working on the main body
or the body of some procedure. This error doesn’t apply to the main body’s statement sequence.

CS-321 Compiler Design

Page 18

How to Get Started
Above, I discussed several routines (typeEquals, assignOK, etc.). You’ll want to get these
working as soon as possible.

I suggest that you do things in more-or-less the following order:

(1) Add code so that checkExpr returns the correct type for IntegerConst, RealConst,
BooleanConst, StringConst, NilConst. These will be pointers to TypeName nodes.

(2) Add code so that checkExpr returns the correct type for Variable nodes. You will already
have a call to find to set myDef; use this value to find the type and return that type.

(3) Write the code for typeEquals, and assignOK. Write dummy code for needCoercion (i.e.,
just return FALSE) and insertCoercion (just return the parameter).

(4) Type in the code for checkAssignStmts, which is given above.

(5) Get checkAssignStmt working and test typeEquals and assignOK on PCAT programs that
you create.

(6) Write and debug needCoercion and insertCoercion.

(7) Add the myProc and MyLoop parameters to the “check” functions relating to statements.

(8) Perform the testing associated with RETURN and EXIT statements.

(9) Move on to type checking expressions. (There is a lot of code involved in this step.)

(10) Work on the flow-of-control tests.

On Your Output Exactly Matching My Output
It may be quite difficult to make your error reporting match mine exactly. Be careful not to waste
all of your time trying to get one error message perfect, and not have enough time for the other
messages.

When there are semantic errors in a program, there is no need to worry about making the AST
match the test data exactly. In grading this project, we will use test files with no semantic errors and
test files with semantic errors.

For test files with no errors, the criterion of correctness is that both stdout and stderr must match
the test data exactly. For tests with errors, the criterion of correctness is that stderr must match the
test data, but stdout will be ignored.

When a PCAT program has errors, the grader should check that your code reports an error. If
there is a minor difference - for example, you are catching the error on a slightly different token -
that is MUCH LESS important than the fact that you are catching the error at all. When there are
errors, you must catch them and when the program contains no errors, you must not report any
errors.

CS-321 Compiler Design

Page 19

Standard Boilerplate...
It is considered cheating to decompile or look inside any .class or .jar file I provide. If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 6 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements. If there are
any problems with the assignment, I would like to alert other students and/or modify my
documents or files. If my test data can be improved, please let me know.

Don’t submit multiple times. Be sure to keep an unmodified copy of your file on Sirius with the
timestamp intact. Work independently: you must write this program by yourself.

