
CS-321 Compiler Design

Page 1

Programming Project #4: Abstract Syntax Trees

Due Date: Tuesday, November 1, 2005, Noon

Overview
Modify your parser to build and return an Abstract Syntax Tree representation for the PCAT
program as it parses the PCAT source.

Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p4

Main.java
This file has been altered to print the AST returned from parseProgram().

Ast.java
This file is new. It contains the classes used to describe as AST.

PrintAst.java
This file is new. It contains methods to print out an AST and is used only to make sure the
AST is correct.

Lexer.class
Token.java
StringTable.java
FatalError.java
LogicError.java

These files are unchanged.

makefile
This file has been altered slightly.

tst
This is a subdirectory containing a number of test files. None of the files in this directory
have lexical or syntactic errors.

tst2
This subdirectory contains the same files as p3/tst2. These files had syntax errors. These
tests are included to make sure you still print the error messages correctly.

CS-321 Compiler Design

Page 2

go
go2
run
run2

These files are unchanged.

runAll
runAll2

Same as idea before, but altered slightly for different test file names.

Main.jar
This is the “black box” code, which was used to produce the output files in tst and tst2.

Do not modify any of the files except for Parser.java.

Discussion
Each parsing method will construct and return an abstract syntax tree (AST). The abstract syntax
tree returned from parseProgram (called from main) will represent the entire PCAT source
program. The main procedure (in project 4) will simply print out the tree in its entirety.

In projects 5 and 6, will we walk the AST looking for semantic errors. (We will also modify the
AST in a few places at that time. For example, the expression 2.5 + 1 will be modified to 2.5 +
intToReal (1).)

The file Ast.java documents the Abstract Syntax Tree data structure.

There are many different kinds of AST node. For example, there is one kind of node to represent
assignment statements and another kind to represent expressions involving binary operators.

CS-321 Compiler Design

Page 3

There is a class for each kind of node. Here are the classes in Ast.java.

 Node -- Abstract
 Body
 VarDecl
 TypeDecl
 ProcDecl
 Formal
 TypeName
 CompoundType -- Abstract
 ArrayType
 RecordType
 FieldDecl
 Stmt -- Abstract
 AssignStmt
 CallStmt
 ReadStmt
 WriteStmt
 IfStmt
 WhileStmt
 LoopStmt
 ForStmt
 ExitStmt
 ReturnStmt
 ReadArg
 Expr -- Abstract
 IntToReal -- Not used in project 4
 BinaryOp
 UnaryOp
 FunctionCall
 ArrayConstructor
 RecordConstructor
 IntegerConst
 RealConst
 StringConst
 BooleanConst
 NilConst
 ValueOf
 Argument
 FieldInit
 ArrayValue
 LValue -- Abstract
 Variable
 ArrayDeref
 RecordDeref

The Ast.java file contains a class called Ast and all the above classes are inside of Ast. This
allows us to put several classes in a single file, which reduces the number of .java files. When you
compile this file, it will create a .class file for every one of these classes, with names like
Ast$Node.class and Ast$Body.class.

Within your code, you can refer to a class using a name such as Ast.Node or Ast.Body.

CS-321 Compiler Design

Page 4

Each AST class has several fields. The document “Abstract Syntax Tree – Class Summary”
shows the class layouts / field names in a graphical way which you may find helpful.

The class Ast.Node has a single field, called lineNumber. Since all classes are subclasses of
Ast.Node, they will all have a lineNumber field. The lineNumber will give the source code line
number on which the construct appeared in the PCAT source file. (Basically, we just pick up
lexer.lineNumber when the object is created.) We need to keep the line number around since it
must be printed in any semantic error messages that we generate while walking the tree later on.

The following classes are “abstract”: Node, CompoundType, Stmt, Expr, and LValue. The
indentation above shows the class-subclass structure. For example, BinaryOp is a subclass of
Expr, which is a subclass of Node.

Let’s take a look at BinaryOp:

 static class BinaryOp extends Expr {
 int op;
 Expr expr1;
 Expr expr2;
 int mode; // Not used until proj 6
 }

In addition to the lineNumber field, this class has several fields that are particular to it. The op
field tells which operator is involved and will be something like Token.PLUS, Token.STAR, or
Token.EQUAL. (For the op, we use the integer of the corresponding token type.) A binary
operator expression has two operands, which are its sub-expressions. Thus, a BinaryOp node will
point to two sub-trees (expr1 and expr2) each of which represents one of the sub-expressions.

As this example shows, the file Ast.java also includes some fields we’ll be using in later projects.
The comments in the file will identify in which project such fields will first be needed; you can
ignore these fields until the later projects. For example, you can ignore the field named mode for
now.

Given the class Ast.Node, we can define pointers to nodes and use them to build up larger trees
from smaller trees. For example:

Ast.Expr e1, e2;
Ast.BinaryOp p;
...
p = new Ast.BinaryOp ();
p.op = Token.PLUS;
p.expr1 = e1;
p.expr1 = e2;

The constructor for Ast.Node contains code to fill in the lineNumber field using the current value,
so we don’t need to do it here.

[At first, you might think it would be a good idea to create specialized constructors for each class,
such as:

BinaryOp (int op, Ast.Expr e1, Ast.Expr e2) { ... }
UnaryOp (int op, Ast.Expr e) { ... }
...

Then the above code becomes:

CS-321 Compiler Design

Page 5

p = new Ast.BinaryOp (Token.PLUS, e1, e2);

We will not do this since (1) it would create a lot of little constructors, (2) often we want to allocate
the node before we have the subtrees built (in order to pick up a value of lineNumber that is more
accurate), and (3) it is often necessary to go back and modify the nodes. Nevertheless, it is a
debatable issue of style.]

The nodes in the abstract syntax tree correspond fairly closely to the syntax of PCAT, but there are
several differences that need to be discussed.

Statements
There are several places in the PCAT grammar where a list of zero or more statements is expected
(like in a body, after “then”, etc.) To deal with lists of statements, each of the statement classes
(AssignStmt, CallStmt, ReadStmt, ..., ReturnStmt) has a next field. The next field is in the
Stmt class. We will represent a statement list as a linked list of Stmt nodes. Thus, this linked list
will, in general, contain several different kinds of objects, but they will all be Stmts.

You probably have a method parseStmts() which will parse zero-or-more statements. This
method should return a pointer to a list of statement nodes (or the NULL pointer). parseStmts()
probably contains a while loop, which calls routines like parseIfStmt(), etc. The idea is to modify
parseIfStmt() so that it will return an IfStmt object. Then parseStmts() will need to add that
node to the end of a growing list of statement nodes, using the next field of the previously last node
in the list. Note that we don't need to know exactly what kind of a statement was last on the list; we
will just treat it as a Stmt, which has a next field.

If Statements
The IF statement in PCAT contains zero-or-more “elseif” clauses but the IfStmt class contains
only room for a THEN statement list and an ELSE statement list.

 static class IfStmt extends Stmt {
 Expr expr;
 Stmt thenStmts;
 Stmt elseStmts;
 ...
 }

To deal with ELSE-IF clauses, note that:

if expr-1 then
stmts-1

elseif expr-2 then
stmts-2

...
elseif expr-n then

stmts-n
else

stmts-0
end;

is equivalent to:

CS-321 Compiler Design

Page 6

IfStmt IfStmt IfStmt

expr-1 stmts-1 expr-2 stmts-2 expr-n stmts-n stmts-0

if expr-1 then
stmts-1

else
if expr-2 then

stmts-2
else

...
if expr-n then

stmts-n
else

stmts-0
end;

end;
end;

For the first IF-ELSEIF-ELSEIF-END statement, we will build exactly the same tree that we would
build for this set of nested IF-THEN-ELSE statements. The tree is shown next. In that diagram,
the “tree” has been visually distorted to suggest that a list of ELSEIF clauses is represented by a
linked list of IfStmt nodes.

In the document “Abstract Syntax Tree – Class Summary” some of the fields are marked with an
asterisk (*). Such a field may be NULL. In an IF statement, for example, the THEN statement list
or the ELSE statement list may be empty. In the node constructed for the following code, the
thenStmts field would be set to NULL.

if expr-1 then
else

stmt;
stmt;
stmt;

end;

lineNumber
next
expr

thenStmts
elseStmts

•••

One per else-if clause

Ø Ø

CS-321 Compiler Design

Page 7

CallStmt

Argument Argument

tree for “a” tree for “b”

“foo”

Representation of Argument Lists
In the following PCAT statement, a procedure is to be called:

foo (a, b, c);

To deal with zero-or-more actual parameters, we use a linked list of zero-or-more Argument
objects. (The term “argument” is synonymous “actual parameter”.) This list is pointed to by the
args field, and is linked through the next field in class Argument.

Several of the AST classes have a field called id. CallStmt is an example. In all cases, the id field
is a pointer to some String returned from the lexer, namely lexer.sValue. In a later project, we will
need to look this string up in the symbol table to ensure that it was previously defined, but for now
we will just store it in the id field.

The FunctionCall class is similar to the CallStmt class in that it, too, will contain a pointer to a
list of zero-or-more Argument nodes. The difference is that FunctionCalls represent a
procedure invocation within an expression, as in:

x := 3 * foo (a, b, c);

while the CallStmt represents a procedure invocation at the statement level, as in:

foo (a, b, c);

Likewise, the WriteStmt node will contain a pointer to a list of Argument nodes. In WRITE
statements—and only in WRITE statements—the PCAT programmer can use string literals, as well
as general expressions. For example:

write ("hello", (i+3)*x, "world");

In PCAT, there are no operations on strings and variables cannot contain strings as values. To
represent string literals, use a StringConst node, with the sValue field pointing to the String
associated with the lexer token.

The READ statement expects one-or-more arguments, which may not be general expressions.
Instead, each argument must be an l-value. The field readArgs in the ReadStmt node will point to

lineNumber
next

id
args •••lineNumber

next
expr

CS-321 Compiler Design

Page 8

Tree for 1

LESS

Tree for 2

PLUS

Tree for 3

STAR

Tree for 4

a list of one-or-more ReadArg nodes, each of which will point to the tree returned after parsing an
l-value. In other words, the lValue field of the ReadArg object will point to an object of one of the
LValue classes.

(The LValue classes are Variable, ArrayDeref, and RecordDeref. Anywhere we see a field
called lValue, it will contain a pointer to an instance of one of these three classes.)

Expressions
BinaryOp nodes have already been mentioned. The tree returned from each call to parseExpr()
should reflect the correct associativity and precedence of PCAT. Presumably, your parsing routines
took care of this, and if you build the trees in the obvious way within the parsing code, you should
get the correct grouping.

For example, the expression:

1 < 2 + 3 * 4

should result in:

since * has higher precedence than +, which is higher than <.

On the other hand, the expression:

1 + 2 + 3 + 4

op
expr1
expr2

op
expr1
expr2

op
expr1
expr2

CS-321 Compiler Design

Page 9

Tree for 1

PLUS

Tree for 2

PLUS

Tree for 3PLUS

Tree for 4

should be represented as:

to reflect the left-associativity of all binary operators. (Note that I am starting to abbreviate the
details of the object layouts a little.)

All of this should “come for free” if your parse routines are parsing expressions in a way that
reflects the desired associativity and precedence. If your trees are not shaped correctly, you may
wish to review the grammar your parser is looking for.

It is likely that your parsing routines implement rules such as:

expr2 → expr3 { ('+' | '-' | 'or') expr3 }

using a while loop: As long as there is a '+' or '-' or 'or' then scan it, pick up an operand, and repeat.
So when you are parsing

1 + 2 + 3 + 4 + 5

you will be building a tree by adding a new structure to the top. Below, I've twisted the diagram to
suggest its similarity to a list. Here, the additions are at the front (right end) of the list, using the
field expr1 as a “next” pointer.

expr1
expr2

CS-321 Compiler Design

Page 10

3 4

PLUS

2

PLUS

51

PLUS PLUS

ArrayConst.

53

• • •
ArrayValue

-9

ArrayValue

100

• • •
Ø

Constructor Expressions
The values field in an ArrayConstructor node will point to a list of one-or-more ArrayValues
nodes, which will be linked on their next field. If no “count expression” is supplied in the PCAT
source code, the countExpr field of a ArrayValues node will be NULL . For example:

MyArr [< ..., 53 , 100 OF -9 , ... >]

will result in:

Likewise, the fieldInits field in a RecordConstructor node will point to a list of one-or-more
FieldInits nodes, which will be linked on their next field.

id
values

next
countExpr
valueExpr

expr1
expr2

CS-321 Compiler Design

Page 11

L-Values and ValueOf
An identifier can appear either in an expression or wherever an l-value is expected. In the following
code, x appears as an l-value on the left-hand side of an assignment while y appears buried within
an expression.

x := 1 + (y * 4);

These two uses are fundamentally different. The x is used as an l-value and the y is used as an r-
value.

What code shall we generate for a variable used as an l-value? For x we need to generate code to
determine the address of the location to use. In general, this may require some computation since x
may be a local (dynamically allocated) variable or it might involve record and array dereferencing, as
in:

a[i+5].f := ...;

For r-values, we will compute the address first (again, this may involve arbitrary computation).
Then, with address in hand, we can generate a “load” instruction to get the data from the desired
location in memory.

We can always use an l-value as an r-value and this is reflected in the PCAT grammar:

Expression → LValue
 → ...

Thus, whenever, we encounter an l-value used as an expression, we must insert a ValueOf node to
indicate that we are converting an l-value to an r-value. Whenever we use an l-value as an l-value
(i.e., in a READ statement, on the left-hand side of an ASSIGNMENT, to the left of the '[' in an
array indexing expression, to the left of the '.' in a record dereferencing expression, or as the index
variable in a FOR statement) we will use it as is.

For example, the following code:

x := y;

will be represented as:

CS-321 Compiler Design

Page 12

AssignStmt

Variable

“x”

ValueOf

“y”

Variable

Later, during code generation, the ValueOf node will result in a “load” instruction being
generated.

Types
Types can be used in the following contexts:

In a variable declaration, e.g.,
var x: TypeName := ...;

As the “element type” in an array type, e.g.
array of TypeName

As the type of a field in a record type, e.g.,
record ... myField: TypeName; ... end

As the return type for a procedure, e.g.,
procedure foo () : TypeName is ... end;

As the type of a parameter to aprocedure, e.g.,
procedure foo (..., p3: TypeName, ...) is ... end;

A TypeName may be “integer”, “real”, or “boolean” or may be a type defined in a type
declaration. However, at this stage we will not be checking this.

A TypeName will be represented with a TypeName object, which has one field of interest at this
time. Each TypeName object has a field called id, which you should set to point to a String. In
addition, there is a field called myDef, which will be used in later projects for defined types, i.e., for
all types besides “integer”, “real”, and “boolean”. For now, myDef will not be set.

A TypeDecl defines a new type. Each TypeDecl is represented with a TypeDecl object. The new
type has a name (stored in the id field) and a new type, which is either an array type or a record
type. Collectively, array types and record types are called CompoundTypes, since they are (in some
sense built out of other types, like “integer”, “real”, “bool” and other compound types. The

lValue
expr

id lValue

id

CS-321 Compiler Design

Page 13

TypeDecl

RecordType

“Integer”

FieldDecl

TypeName
“f1”

“Real”

FieldDecl

TypeName
“f2”

Ø

TypeDecl object has a field, called compoundType, which you should set to point to the definition
(i.e., to either an ArrayType or RecordType object).

An array type has a base type (or “element type”), which is the type of the elements in the array.
The ArrayType class has a field called elementType which should be set to point to the
TypeName representing the base type.

A record type will consist of a number of named fields, each of which has a type. The fieldDecls
field in a RecordType node will point to a list of one-or-more FieldDecl nodes, which will be
linked on their next field.

For example the following PCAT fragment:

type MyRecType is record
 f1: integer;
 f2: real;
 end;

will be represented as:

id
compoundType

fieldDecls
id

type
next

id id

“MyRecType”

CS-321 Compiler Design

Page 14

VarDecl “x” VarDecl “y” VarDecl “z”

TypeName

“Integer”

STAR ValueOf

Variable

“x”

ValueOf

Variable

“x”

Ø

Bodies and Declarations
A body will be represented with a Body node.

 static class Body extends Node {
 TypeDecl typeDecls;
 ProcDecl procDecls;
 VarDecl varDecls;
 Stmt stmts;
 ...
 }

The typeDecls field will point to a list of TypeDecl nodes, which will be linked on their next
fields. The procDecls field will point to a list of ProcDecls nodes, which will be linked on their
next fields. The varDecls field will point to a list of VarDecl nodes, which will be linked on their
next fields. Finally, the stmts field will point to a list of Stmt nodes, which will be linked on their
next fields.

A single VarDecl grammatical construct can be used to declare one-or-more variables, as in the
following example:

var x, y, z: integer := 4 * foo(23);

However, each VarDecl node can only be used to define a single variable, so the above PCAT
fragment must be represented as a linked list of three VarDecl nodes. For the above source, you
should build an AST that will look like this:

id
type
expr
next

id id••• •••

CS-321 Compiler Design

Page 15

Notice that the node representing the TypeName is shared by all three VarDecl nodes.
(Technically, we are now dealing with DAGs—Directed, Acyclic Graphs—but the distinction may
be safely ignored.)

Also notice that the sub-trees representing the initializing expressions for the second and third
variables are a little different than what appears in the source. We can’t use the same exact
expression since it would cause us to call “foo” three times at runtime, which is not the correct
semantics for PCAT: we must only evaluate the initializing expression once.

The way we get around it is to build the same structure for this source as we would have built for:

var x: integer := 4 * foo(23);
 y: integer := x;
 z: integer := x;

As you parse a variable declaration for multiple variables, you will build up a list of VarDecl nodes.
After you get the type (if present; it is optional) and the initializing expression, you can go back
through the list and update the type and expr fields to point to the correct trees.

The routine which parses a VarDecl (I called it parseVarDecl()) will then return this linked list.

Similarly, a TypeDecl can define one-or-more types at once:

type t1 is ...; t2 is ...; t3 is ...;

Again, a linked list will result, although there will be no shared sub-trees.

Finally, one-or-more procedures may be defined at once, and a list of ProcDecl nodes will result:

proc foo1(...) is ...; foo2(...) is ...;

In PCAT, we can have variable declarations, type declarations, and procedure definitions all mixed
up in any order. For example:

proc foo1(...) is ...;
var x, y, z: ...;
type t1 is ...; t2 is ...; t3 is ...;
var a, b: ...;
type t4 is ...;
proc foo2(...) is ...;

In the representation, we will group all TYPEs together, all PROCs together, and all VARs together.
The above fragment will be represented as if it had been written:

CS-321 Compiler Design

Page 16

type t1 is ...;
 t2 is ...;
 t3 is ...;
 t4 is ...;
proc foo1(...) is ...;
 foo2(...) is ...;
var x: ...;
 y: ...;
 z: ...;
 a: ...;
 b: ...;

When we do the semantic checking later, we will want to process the TYPE declarations first (since
the VARs and PROCs may include references to types defined in the same scope). We will want to
process PROCs second (since the initializing expressions in VARs may include references to
functions defined in the same scope) and we will process VARs last. To facilitate this order of
processing, we will group the declarations at this stage of the compiler.

To parse and build the AST for declarations and bodies, I used the following parse routines:

Ast.Body parseBody () {...}
void parseDecls (Ast.Body body) {...}
Ast.TypeDecl parseTypeDecl () {...}
Ast.ProcDecl parseProcDecl () {...}
Ast.VarDecl parseVarDecl () {...}

ParseBody() parses a body. It begins by allocating a Body node. (All the lists will be initialized
to NULL, since Java initializes all fields to zero.) Then it calls parseDecls(), which parses zero-or-
more declarations. ParseDecls() keeps going as long as the next token is VAR, TYPE, or
PROCEDURE, and upon seeing one of those, calls parseTypeDecl(), parseProcDecl(), or
parseVarDecl() to get a single declaration. ParseDecls() looks like this:

while (1) {
if nextToken == TYPE then

call parseTypeDecl to get a list of TYPE_DECL nodes
append this list to the end of the list stored in BODY.typeDecls

elseIf nextToken == PROC then
call parseProcDecl to get a list of PROC_DECL nodes
append this list to the end of the list stored in BODY.procDecls

elseIf nextToken == VAR then
call parseVarDecl to get a list of VAR_DECL nodes
append this list to the end of the list stored in BODY.varDecls

elseIf nextToken == BEGIN then
return

else
syntaxError

endIf
}

ParseDecls() does not return a tree; instead it is passed a pointer to the Body node which
represents the body we are currently parsing. It modifies the node by adding to the ends of the
existing lists of TypeDecl, ProcDecl, and VarDecl nodes.

The ProcDecl node contains a field called formals, which points to a linked list of Formal nodes.
Formal nodes are linked on their next field. There is one Formal node allocated per formal

CS-321 Compiler Design

Page 17

parameter in a PROCEDURE declaration. For example, the following would result in a list of five
Formal nodes:

procedure foo (x,y,z: integer; a,b: real) is begin ... end;

Note that Formal nodes may share sub-trees, much like VarDecl nodes shared sub-trees. In this
example, the first 3 Formal nodes will all have their typeName fields pointing to a single
TypeName object representing “integer”, while the 4th and 5th nodes on the list will share the
node representing “real”.

Dealing with “true”, “false”, and “nil”
In PCAT, the identifiers “true”, “false”, and “nil” are predefined and must be handled specially.
These identifiers can appear in any expression, just like any other variable, but for them, you’ll need
to construct special nodes.

Note that these special names are not defined in the grammar as keywords, so the lexer will return
normal ID tokens when they are encountered.

(By the way, another approach is for the language to dispense with such “predefined identifiers”
and make them first-class keywords. I think making “true”, “false”, and “nil” keywords is a
better approach.)

The “nil” variable will stand for a null pointer. (Some languages use “nil” and some use “null”.
For all intents and purposes, “nil” and “null” mean the same thing.) Whenever “nil” is
encountered in an expression, you should build an AST using a NilConst object. There are no
fields in this object.

For “true” and “false”, you’ll need to use a BooleanConst node. There is a single field called
iValue. For “true”, set iValue to 1 and for “false”, set iValue to 0. Note the similarity between
the BooleanConst node and the IntegerConst node; they’ll be used very similarly.

The grammar for expressions has been rewritten to include something like:

Expr5 --> ‘(’ Expr ‘)’
| INTEGER
| REAL
| IdMods

IdMods --> ID ‘(’ Arguments ‘)’
 | ID ‘{’ FieldInits
 | ID ‘{’ ‘{’ ArrayValues
 | ID LValueMods

You can probably deal with “true”, “false”, and “nil” most easily by adding code to explicitly
check to see which ID you have. If it is one of the predefined IDs, then deal with it directly and
don’t look for anything after it.

In other words, modify parseIdMods so it uses a rule like this:

CS-321 Compiler Design

Page 18

IdMods --> IDtrue
| IDfalse
| IDnil
| ID ‘(’ Arguments ‘)’

 | ID ‘{’ FieldInits
 | ID ‘{’ ‘{’ ArrayValues
 | ID LValueMods

Note that for every variable occurrence in the source, your compiler must make 3 comparisons to
check for “true”, “false”, and “nil”. String comparisons are kind of slow, but remember that all
strings returned from the lexer will have been entered into the StringTable. Thus, we can use == for
string comparisons, as long as both strings we are checking have been added into the StringTable
first.

Perhaps you will want to initialize three values before parsing begins and use them in these
comparisons.

StringTable.insert ("true", Token.ID);
trueString = StringTable.lookupString ("true");
...
if (id == trueString) { ...

The PrintAst.java File
I am providing a file called PrintAst.java which is used to print out the AST. It is called from
main to print whatever tree is returned from your parser. Please read the comment at the beginning
of that file to find out more about how ASTs are printed.

Ideas for Getting Started
Begin by creating a p4 directory and copying your Parser.java file. Then edit Parser.java and
remove all of the “print” statements that we used to verify / check the parser. In other words,
remove the printing to stdout. Be sure to keep the error reporting stuff that went to stderr. Don’t
just comment them; delete them entirely. (You always have p3/Parser.java to go back to.)

Make sure you can compile cleanly at this stage.

Next, change all the return types on your “parse...” methods from void to whatever Ast class they
will be returning. Also add dummy “return” statements, which will simply return null, and get it
to compile cleanly.

At this point, you might want to verify that runAll and runAll2 from project 3 still work correctly.
Of course, all the output to stdout will cause the entire contents of the *.out.bak files to be listed
in the “diff”s, but your program should still terminate with no errors.

Next, deal with ParseBody. Get a Body node returned and make sure an AST with one node
prints out properly. A dummy program like this should be adequate: “program is begin end;”.
This is test p1, but remember that you can just type PCAT source input on stdin during testing.

CS-321 Compiler Design

Page 19

Next, work on ParseStmts and parseReturnStmt. Start by just handling the RETURN
statement. So that you can handle programs like:

program is
 begin
 return;
 return;
 return;
 end;

Now you are ready to dig into the parsing of expressions. You can use program like the following
to test various expressions:

program is
 begin
 return 3 + 4;
 end;

At this point, skip parseIdMods. Have it return null for now. Skip ArrayConstructors and
RecordConstructors at this stage.

Get tests p2, p3, and p4 working.

Implement parseLValue and get test p5 and p6 working.

Work on parsing ArrayConstructors and RecordConstructors and get p7 and p8 working.

Work on parseDecls. Eliminate parseDecl and move it into parseDecls. Pass a Body down to
parseDecls.

Implement parseVarDecl.

Implement parseTypeName and get p8 working.

Details...
As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 4 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

CS-321 Compiler Design

Page 20

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements. If there are
any problems with the assignment, I would like to alert other students and/or modify my
documents or files. If my test data can be improved, please let me know.

Don’t submit multiple times. Be sure to keep an unmodified copy of your file on Sirius with the
timestamp intact. Work independently: you must write this program by yourself.

