
CS-321 Compiler Design

Page 1

Programming Project 2: Lexical Analyzer

Due Date: Tuesday, October 18, 2005, Noon

Overview
Create a lexical analyzer for the PCAT language. The lexical structure is described in Section 2 of
the PCAT Programming Language Reference Manual. Your program should be written in Java.

The lexer will consume source text and produce tokens (with attributes where appropriate), one
token per call to the getToken() method. It will flag lexical errors by printing error messages on
the standard error output (stderr). Any portion of the input text that cannot be converted to a legal
token stream should trigger an appropriate informative error message to standard error. The lexer
should then proceed, ultimately returning a valid token to its caller (e.g., a parser).

Your goal is to create a file called Lexer.java containing a class called Lexer. This class should
have a method

int getToken ()

This class must have at least the following fields:

int lineNumber; // The current line number
int iValue; // Attributes associated with the
double rValue; // most recent token
String sValue; //

The Lexer class should have a constructor:

Lexer (Reader rdr)

I will provide the following files:

Main.java
Token.java
StringTable.java
FatalError.java
LogicError.java

Your class will be compiled with these files to produce an executable. The Main.java file
contains a main method which will be used to test your lexer. The main method will create a
Lexer object, invoke getToken repeatedly, and print the tokens that the lexer returns on the
standard output.

CS-321 Compiler Design

Page 2

Files
The following useful files can be found via the class web page or ftp’ed from:

~harry/public_html/compilers/p2

Main.java
Token.java
StringTable.java
FatalError.java
LogicError.java

The framework in which your code will be used. Do not alter these classes!!! Your
program will be tested using these files.

makefile
If you are familiar with the Unix “make” command, you can use this file to compile your
code. If you are working in a different environment, you may not want this file.

tst
This is a subdirectory containing a number of test files. The tests are named, with names
like test1, test2, test3, ... For each test, there are 3 files in the directory, such as:

test1.pcat
test1.out.bak
test1.err.bak

The XXX.pcat file is a sample input file for your program. The XXX.out.bak file is the
desired output to stdout. The XXX.err.bak. is the desired output to stderr.

go
This is a shell script that will run your program on a test file and print the input file,
stdout, and stderr. For example, you can type something like

go test1
When your program is not working correctly, you can use this to see exactly what output
your program is producing.

run
This is shell script that will run your program on a test file, compare the results to the
desired results, and print only the differences. For example, you can type something like

run test1
If your program is working correctly on this test, you’ll see no output. Otherwise, you’ll
see the differences.

runAll
This is shell script that will run your program on all the tests in the tst directory. It calls
run once for each test. To test your program, type

runAll
If your program is working correctly, you’ll see only a list of the tests that were run.

Main.jar
This is a “black box” solution. This file contains a working Lexer class. You can
execute it with a command such as:

java -classpath Main.jar Main tst/test1.pcat
This is the code that was used to produce the desired output files in the tst directory.

CS-321 Compiler Design

Page 3

You must not modify any of these files. Look through these files and make sure you understand
them.

Token Definitions
The PCAT Language Reference Manual contains a detailed specification of the tokens.

Take a look a the file Token.java. It contains a list of all the token types:
 final static int
 AND = 0,
 ARRAY = 1,
 BEGIN = 2,
 ...
 ID = 29,
 INTEGER = 30,
 REAL = 31,
 STRING = 32,
 ...
 PLUS = 33, // +
 MINUS = 34, // -
 ...
 RBRACE = 49, // }
 ASSIGN = 50, // :=
 LEQ = 51, // <=
 ...
 EOF = 54;

Your getToken method must return an integer indicating the type of token just scanned. Your
code must return one of these codes. For example, after scanning a REAL token, you might
execute:

return Token.REAL;

For tokens with an associated value, your lexer must also store an associated attribute value before
returning. Toward this end, your lexer should include 3 fields:

int iValue;
double rValue;
String sValue;

In addition, your lexer should include a field which you will set to the line number of the last
token returned:

int lineNumber;

If an INTEGER token is scanned, your code should set the iValue field to the integer value of
the lexeme. If a REAL token is scanned, your code should set rValue. If an ID or a STRING is
scanned, your code should set sValue.

The code using your lexer will access these fields. For example, the parser might contain code
like this:

CS-321 Compiler Design

Page 4

Lexer lex = new Lexer (...);
...
nextTok = lex.getToken ();
...
if (nextTok == Token.REAL) {
 d = lex.rValue;
} else {
 System.out.println ("Syntax Error on line " + lex.lineNumber);
...

For ID tokens, there is an additional constraint on the sValue attribute: If the same identifier
appears in several places in the source input, the lexer must return a pointer to the same String
object each time. Later, during semantic analysis, we will often need to compare two IDs to see if
they are the same ID. At that time, we want to be able to simply compare pointers without having
to look at each of the individual characters in the Strings.

The main method and one of the tests (“test5”) are set up to check that, for a particular
identifier, the sValue will always point to the same String object.

To assist you with this, I have provided the StringTable.java file. That code can be used to
initialize, query, and update a “string” table. It can also be used to facilitate a quick lookup to see
if some sequence of letters happens to be one of the reserved keywords and, if so, which token
type to use.

STRING tokens should not be entered into the String Table since it is more trouble than it is
worth. All string constants in a program will generally be unique and we won’t need to compare
them later anyway.

REAL tokens may be scanned character-by-character to create a string. This string can then be
converted to a double using something like:

... = Double.parseDouble (str);

If the string specifies a value that is too large for a double, then the result of this conversion will
be “positive infinity”, which will be returned from parseDouble. Your lexer should print an
error message and set rValue to 0.0.

Handling Errors
When a lexical error occurs, your lexer should print a message on stderr and keep going until a
legal token can be returned. The Main class contains a static variable:

static int errorCount = 0;

which you should increment every time a lexical error occurs.

CS-321 Compiler Design

Page 5

Error messages that your program should print out are shown by example:

Error on line 1: End-of-file encountered within a comment
Error on line 2: End-of-line encountered within a string
Error on line 3: End-of-file encountered within a string
Error on line 4: Illegal character in source ignored
Error on line 5: Illegal character in string ignored
Error on line 6: Integer out of range (0..2147483647)
Error on line 7: Maximum identifier length (255) exceeded
Error on line 8: Maximum string length (255) exceeded
Error on line 9: Real number is too large

I am supplying two classes called FatalError and LogicError. These will be used throughout
the compiler.

FatalError is similar to CompileTimeError in project 1. The idea is that if something really
bad goes wrong during compilation, the code will throw a FatalError, which is caught in the
main method. If a FatalError is ever thrown, the compiler will print an error message and
terminate immediately. In your lexer, it is possible that an IOException will occur whenever you
try to read from the input. If an IOException occurs, a reasonable thing is to throw a
FatalError. Here is how your getToken might look:

 int getToken ()
 throws FatalError
 {
 ...
 try {
 ... lots of code, including calls to “read” a character ...
 } catch (IOException exn) {
 throw new FatalError ("I/O error: " + exn.getMessage() + " at line " + lineNumber);
 }
 }

Your code should throw LogicError whenever some program logic error or inconsistency is
detected. When main catches LogicError, it will print the message and also print information
about what methods are executing at the time of the error. This might be helpful in debugging.
For example, your code might contain code like this:

 if (x == 1) {
 ...
 } else if (x == 2) {
 ...
 } else if (x == 3) {
 ...
 } else {
 throw new LogicError ("Unexpected value for x");
 }

(My own lexer code doesn’t happen to use LogicError and you don’t need to use it in your
lexer if it doesn’t make sense. I am only supplying LogicError now since it will be useful in
later projects.)

CS-321 Compiler Design

Page 6

Requirements
Your code should deal with its input in exactly the same way as my code; this applies both to
handling correct PCAT source programs as well as to printing error messages for incorrect PCAT
source programs. Your programs will be tested mechanically using test data generated by my
code. If there is any question about the exact functionality required...

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please let me know so I can modify my documents and alert other students. If my test
data fails to catch some bug in your program or you feel the testing could be improved,
please let me know so I can add to my test files for next year’s course.

Program Submission
Place your code in a single file named “Lexer.java” and email it to:

cs321-01@cs.pdx.edu

Your file should be a plain text attachment; the contents of the email itself will be ignored. The
subject line of the email must say:

Proj 2 - Xxxxxx Yyyyyy

where “Xxxxxx Yyyyyy” is your name. Please use your full name as it appears in the PSU
registration system. Don’t forget your name!

Do not submit your program twice without prior approval. If a second submission has been
approved, use a subject line such as:

 Proj 2 - Xxxxxx Yyyyyyy - Second submission

Your program is due at noon. Please email yourself a copy of the program and keep it for a
while. Also, please keep a copy of your file on Sirius as you submitted it; do not modify this file.
If any issues arise, we can also look at the timestamp on this file.

Do Not Work Together
Do not work together on any programming project in this class. Do not look at anyone else’s
code. Do not allow anyone to use your code. Every line of code you submit must be your own
work (except of course the code we distribute to the class). You may discuss Java and the
assignments with other students, but only in general terms. You may not look at someone else’s
code or share Java code.

You are free to look at the lexer code I distributed for the previous project and use portions of that
wherever convenient.

CS-321 Compiler Design

Page 7

Questions / Comments
Email questions to:

harry@cs.pdx.edu Questions for instructor

Please include “cs321” in the subject line.

