
CS-322 Compiler Design

Page 1

Project 11:
Target Code Generation

Due Date: Tuesday, May 14, 2006, Noon
Duration: Two weeks

Overview
The goal of this project is to finish the PCAT compiler by producing SPARC assembly code
instructions from the intermediate representation (IR). This target code can then be assembled and
executed.

File you are to create:
Emit.java

Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p11

Main.java
Altered to call Emit.java.

Peephole.java
This file relates to an optional extension: a “peephole optimizer” for the IR instructions. If
you are not doing the extension, just copy this file into your directory and compile it, along
with the other classes.

Lexer.java
Parser.java
Checker.java
Generator.java

Files you created.

Lexer.class
Parser.class
Checker.class
Generator.class

Compiled versions.

CS-322 Compiler Design

Page 2

Token.java
StringTable.java
SymbolTable.java
Ast.java
PrintAst.java
PrettyPrintAst.java
IR.java
run
go

Unchanged.

tst
runAll

Same as before, but altered for this project.

go2
New file. This shell script will compile, assemble, and execute the program. It will print out
the source and the .s file before beginning execution.

pc
New file. This shell script will compile and execute a PCAT program. “pc” stands for
“PCAT Compile”.

run2
runAll2

These shell scripts are for testing other code generation algorithms. Like run and runAll,
they will compile a test PCAT program from the tst directory. However, these scripts will
ignore the .bak files. Instead, these scripts proceed to execute the program (using pc) and
make sure the output from the execution is correct.

makefile
Modified to deal with Emit.java.

Main.jar
The new “black box” code.

Organization
The goal is to run through the Intermediate Representation (IR) statements and produce target code,
i.e., SPARC assembly code. This target code will be suitable for assembling and executing.

This document describes how to do this using “Code Generation Algorithm #1.” You are free to
try a more sophisticated algorithm... after you get “Code Generation Algorithm #1” working!

You will create a file called Emit.java containing class Emit with a method called emitAll().
Main.java has been modified to create an Emit object and to invoke emitAll() on it. The
emitAll() method takes no arguments and returns no result.

Your emitAll() method (and any methods it invokes) should just print the assembly code to
stdout. Later, this will allow us to pipe the output of your compiler straight into the assembler.

CS-322 Compiler Design

Page 3

In Main.java I have commented out the calls to printOffsets() and to printIR(). For debugging,
you may wish to un-comment these calls. I’ve also included the call to the emitAll() method,
which you are going to write.

The “pc” Shell Script File
After a PCAT program has been compiled, it should be assembled and executed. I have provided a
shell script file called pc which will do all of this. It will:

• run Main to produce the .s file
• abort if errors
• invoke gcc to assemble the .s file and produce an executable
• abort if errors
• execute the program

There is a test in tst called simple, so once you have finished Emit.java and compiled your
compiler, you can type:

pc tst/simple

to compile, assemble, and run a PCAT program named tst/simple.pcat. (Of course, the assembly
and execution steps will only work on a SPARC computer.) The pc command will also leave the
files tst/simple.s and tst/simple behind, so the executable can be used again later. To re-execute
the program, type

tst/simple

When the pc script invokes your compiler, it sends the stdout to a file with a name such as
simple.s. This scheme depends on the compiler sending only the generated SPARC code to
stdout and sending all error messages to stderr. The files I am providing print error messages on
stderr instead of stdout, although they print other stuff (printAst(), prettyPrint()) on stdout.
Whenever an error occurs during a compile, Main.java calls System.exit(1) to terminate with a
non-zero error code. This will cause the pc script to terminate without proceeding to the assembly
phase.

You can also use pc on PCAT programs of your own creation. If you create a file called
myprog.pcat in the same directory as your code, just type:

pc myprog

The “run2” and “runAll2” Shell Script Files
The run and runAll scripts work the same way as in previous projects. They assume the existence
of files like:

simple.pcat
simple.out.bak
simple.err.bak

In addition, I have provided a second set of scripts called run2 and runAll2, which assume the
existence of files with names like:

CS-322 Compiler Design

Page 4

simple.pcat
simple.givenInput
simple.givenOutput1
simple.givenOutput2

which are included in the tst directory in this project.

The script called run2 will first compile and assemble the PCAT program (using pc) and then run
the executable. When running the executable, run2 will pipe characters from the givenInput file
to the running program. Run2 will save the stdout and stderr output produced by the executable.
After execution, run2 will compare the output from the execution to the files containing the
expected output (givenOutput1 and givenOutput2) and will print any differences. The run2
script will ignore the .out.bak and .err.bak files.

I have also provided a script called runAll2, which is the same as runAll, except that it applies
run2 to all of the test files, instead of run.

As long as you use Code Generation Algorithm #1 and follow the guidelines given in this
document, your compiler should produce the same .s output file as expected. Therefore, you will
not need to assemble or execute your output. If your output exactly matches the .out.bak and
.err.bak files, it must necessarily assemble and execute in exactly the same way as expected.
Therefore, you will not need to use run2 or runAll2; they are only provided in case you attempt to
use a different code generation algorithm.

The “go2” Shell Script File
The go script is unchanged and works the same way as in previous projects. You can use it to run
your compiler on one of the test files. The go script will print the source. It will then run your
compiler and print the stdout, and the stderr, It will ignore the .out.bak and .err.bak files.

I am also providing a script called go2, which will compile your program and then run it. For
example, you can type:

go2 simple

This script is provided for anyone using something besides Code Generation Algorithm #1.

The go2 script will first print the PCAT source file and then invoke your compiler. The script then
prints out the .s file before invoking the assembler, so you can look at what code your compiler
generated. You will occasionally get assembler error messages if you don’t generate legal SPARC
code. The listing of the .s file is useful when such errors occur. Next, the go2 script assembles the
program into an executable file (with a name such as simple). Finally, if both the compiler and the
assembler finish without exit errors, the script will run your program.

Files in /tst
Several of the files in tst/ are PCAT programs requiring user input. They are: error3, read1,
read2, primes, and quicksort. These files will prompt for input, after telling the user what to
enter.

CS-322 Compiler Design

Page 5

The files fact, quicksort, and primes are programs that actually compute something, rather than
just testing a single aspect of the compiler. In the lectures, we used “quicksort” as an example; the
file quicksort.pcat is a working version of this program. The program fact.pcat computes
factorial numbers and primes.pcat computes prime numbers.

The program speed.pcat is a compute-bound benchmark designed to determine how fast the
compiled PCAT code runs. It is not an “official” test and is not included in the runAll script.
You may run it, but don’t run it too often or you may irritate other users.

Strategy
You may adopt one of several code generation strategies. The black box compiler uses “code
generation algorithm #1” and I recommend that approach as a good way to start. I expect that
some students will try more complex code generation algorithms. Algorithm #1 is much simpler to
implement but it generates many inefficient code sequences. The rest of this document discusses
only code generation algorithm #1. The design of more complex code generation algorithms and
optimizations is left entirely to you.

To do code generation algorithm #1, you need to walk the list of the IR instructions and, for each
instruction, print out several SPARC instructions. The routine printIR() in IR.java happens to
walk the list of instructions so I recommend using it as a starting skeleton for emitAll().

Comments
You probably noticed in projects 8, 9 and 10 how nice it was to have the comments in the output. It
makes it easier to locate the section of output you are interested in.

In this project two types of comments are now included in the output. First, the original comments
produced by calls to IR.comment() are printed. Second, since printIR() contains code to print
the IR instructions, it makes sense to just leave these print statements in emitAll(). The only
modification is to prefix each line with a exclamation (!) and three spaces. An example is shown
below.

The original comments were all capitals so they stand out visually. As you can see, one source code
construct (like a PCAT WRITE statement), translates into several IR instructions, and each
instruction is then translated into several SPARC instructions.

 ! MAIN...
 ! mainEntry
 .global main
 main: save %sp,-136,%sp
 set display0,%o0
 st %fp,[%o0]
 ! WRITE STMT...
 ! writeString str1
 sethi %hi(str1),%o0
 call printf
 or %o0,%lo(str1),%o0
 ! writeNewline
 sethi %hi(strNL),%o0
 call printf
 or %o0,%lo(strNL),%o0

CS-322 Compiler Design

Page 6

Boilerplate
The first section of your target program will need to contain several fixed, predetermined lines of
code. These lines will precede the SPARC instructions your compiler will generate for each IR
instruction. You will need to start by printing out all these fixed lines, which I call the
“boilerplate.” In my own code, I created a single routine, called emitBoilerplate(), which just
prints out all the stuff at the beginning.

Below is an example of how your output target file should begin, i.e., the output from
emitBoilerplate(). (It follows this entire section; locate it now so you can follow along with this
commentary.)

The first thing you see in the boilerplate is a comment. It is typical for compilers to add a comment
to the output telling which version of the compiler was used, copyright notices, etc. Anyone looking
at a strange .s file can tell immediately that it was produced by a compiler, which version of the
compiler, etc.

Next, we need some .global directives since we’ll be calling the routines .div and .rem to perform
integer DIV and MOD.

Next, we’ll need a temporary field and we can name it temp. This field will be used in the writeFlt
routine (discussed below) and temp will also be needed during integer to float conversions since it
is otherwise impossible to move a value from an integer register to a floating register.

Next, we’ll need some format strings. To implement the IR.writeInt, IR.writeFloat, IR.readInt,
and IR.readFloat instructions, we’ll be calling printf() and scanf(), which are included in the C
library. (The gcc command will automatically include these library routines as necessary during the
linking phase.) They will need “format” strings, so we’ll include three of them, called strNL,
strInt, and strFlt. Also, when we print out booleans, we’ll need the strings strTrue and strFalse.
Finally, when runtime errors occur during execution, we’ll be printing out a message before
terminating, so we have the strings message1, message2, ... message5. (Message5 should be all
on one line, but is too long for this document.)

Notice how the compiler directives (.data, .text) put temp into the data segment, and the strings
into the text segment, since they will be read-only. There are also .align directives to ensure that
what follows will be aligned in memory.

Whenever a runtime error occurs, the code will take a branch to one of the labels runtimeError1,
runtimeError2, ... runtimeError5. We need code to print out the right message and abort the
program by calling the exit() routine. The code for each of these “error handlers” follows next.

Next come two routines writeFlt and writeBool. (Printing integers is so simple we’ll just
generate the necessary code inline.) Look over and understand these routines. As far as I can tell,
printf() is incapable of printing single precision floating-point numbers. The code in writeFlt is
passed a single-precision number, converts it to a double, then calls printf to print it. The code in
writeBool tests its argument and prints either one string (strTrue) or another (strFalse).

Next, we need to emit a number of “display register” variables. (“Register” is somewhat of a
misnomer.) We have previously calculated the maximum nesting level of the program; based on
this number, emitBoilerplate() should print out as many of these .word directives as needed.

CS-322 Compiler Design

Page 7

Originally, I thought we would be able to include floating-point constants as literal (i.e., immediate)
values in the SPARC instructions, but there is apparently no way to do that, since there is apparently
no way to move data from an integer register to a floating register without going through memory
first. To deal with this problem, we must generate a single precision floating-point constant (using
the .single directive) for each real constant (i.e., each RealConst node) that appears in the
program. Recall that we have previously built a linked list of RealConst nodes (pointed to by
floatList and linked on their next fields). We will walk the linked list of RealConsts and, for
each, print out a .single directive, using its nameOfConstant and its rValue.

We also built a linked list of all the StringConsts in the program, using the next field in each
StringConst. Next we run though this list and, for each string, print an .asciz directive for it. We
have previously named each string and stored that name in the nameOfConstant field. Note that
we end with an .align directive so that the SPARC instructions that follow will be aligned.

As you are coding this method, remember that you’ll need to escape the double quote character (")
and the backslash character (\) with backslashes.

!
! PCAT Compiler Version 1.0
!
 .global .div
 .global .rem
!
! Standard data fields
!
 .data
 .align 8
temp: .double 0
 .text
strNL: .asciz "\n"
strInt: .asciz "%d"
strFlt: .asciz "%g"
strTrue: .asciz "TRUE"
strFalse: .asciz "FALSE"
message1: .asciz "Execution Error: Allocation failed!\n"
message2: .asciz "Execution Error: Pointer is NIL!\n"
message3: .asciz "Execution Error: Read statement failed!\n"
message4: .asciz "Execution Error: Array index is out of bounds!\n"
message5: .asciz "Execution Error: Count is not positive in array

constructor!\n"
 .align 8

CS-322 Compiler Design

Page 8

!
! runtimeError1-5
!
! Branch to one of these labels to print an error message and abort.
!
runtimeError1:
 set message1,%o0
 call printf
 nop
 call exit
 mov 1,%o0
runtimeError2:
 set message2,%o0
 call printf
 nop
 call exit
 mov 1,%o0
runtimeError3:
 set message3,%o0
 call printf
 nop
 call exit
 mov 1,%o0
runtimeError4:
 set message4,%o0
 call printf
 nop
 call exit
 mov 1,%o0
runtimeError5:
 set message5,%o0
 call printf
 nop
 call exit
 mov 1,%o0
! writeFlt
!
! This routine is passed a single precision floating number in %f0.
! It prints it by calling printf. It uses registers %f0, %f1.
!
writeFlt:
 save %sp,-128,%sp
 fstod %f0,%f0
 set temp,%l0
 std %f0,[%l0]
 ldd [%l0],%o0
 mov %o1,%o2
 mov %o0,%o1
 set strFlt,%o0
 call printf
 nop
 ret
 restore

CS-322 Compiler Design

Page 9

! writeBool
!
! This routine is passed an integer in %i0/o0. It prints "FALSE" if this
! integer is 0 and "TRUE" otherwise.
!
writeBool:
 save %sp,-128,%sp
 cmp %i0,%g0
 be printFalse
 nop
 set strTrue,%o0
 ba printEnd
 nop
printFalse:
 set strFalse,%o0
printEnd:
 call printf
 nop
 ret
 restore
!
! Additional Fields
!
 .data
display0: .word 0
display1: .word 0
display2: .word 0
display3: .word 0
 .text
float3: .single 0r4.4
float2: .single 0r654.321
float1: .single 0r0
str3: .asciz "The computed answer is:"
str2: .asciz "Please enter a real value..."
str1: .asciz "Hello, world!"
 .align 8

When the run script compares the output from your compiler to the .out.bak files, it uses the –w
option on the diff command, which causes it to ignore minor differences in whitespace. The
relevant line in run is:

diff -w tst/$1.out.bak tst/$1.out

Theoretically, you could get by with using a single space wherever the boilerplate has any white
space, but this would be difficult to read. For example, output like this would pass the tests:

CS-322 Compiler Design

Page 10

!
! PCAT Compiler Version 1.0
!
 .global .div
 .global .rem
!
! Standard data fields
!
 .data
 .align 8
temp: .double 0
 .text
strNL: .asciz "\n"
strInt: .asciz "%d"
strFlt: .asciz "%g"
strTrue: .asciz "TRUE"
...

Please try to make your compiler format its output as close to the .out.bak files as possible.

Useful Methods
I found that two methods made things much easier for me during code generation. They are:
getIntoAnyReg() and storeFromAnyReg(). You may wish to create similar methods.

The idea is that you can call getIntoAnyReg(), passing it (1) a pointer to either a VarDecl,
Formal, IntegerConst, or RealConst, and (2) the name of a register (such as “%o3”). It will
generate whatever code is necessary to load the register.

Remember that a VarDecl may describe a local variable or a non-local variable. If you want to get
the value of a local variable, you should generate code like this:

ld [%fp+-148],%reg

where “-148” is the offset of the variable in the activation record.

If the variable access is non-local, you should generate code that uses the appropriate display
register. Assume the variable was declared at lexical level 7 and is used non-locally (say at lexical
level 9). The code might look like this:

set display7,%reg2
ld [%reg2],%reg2
ld [%reg2+-148],%reg

In this case, a second register was necessary to hold addresses. The target register “reg” may be
either an integer or float. Since addresses must always go into integer registers, the routine takes a
third argument, “reg2,” which must name an integer register.

Note that the caller of getIntoAnyReg() may supply the same register for both “reg” and
“reg2.” If, for example, it was called with reg=reg2=“%o0”, it would generate code this code:

set display7,%o0
ld [%o0],%o0
ld [%o0+-148],%o0

CS-322 Compiler Design

Page 11

To distinguish between locals and non-locals, you’ll have to know what the lexical level of the
current routine is. Then you can compare it to the lexical level at which the variable was defined. If
they are equal, this variable must be a local. (Also remember that in a VarDecl, lexLevel == -1
indicates the variable is a temporary. If the variable is a temporary, then it must be a local
reference.)

These methods should generate the same code for Formals (local or non-local) as they generate for
VarDecls (local or non-local).

The code generated by storeFromAnyReg() is the same as the code generated by
getIntoAnyReg(), except that the final instruction is a st instead of a ld. For
storeFromAnyReg(), “reg2” must be different from “reg.”

Here are the specifications for these methods:

// getIntoAnyReg (p, reg, reg2)
//
// This routine is passed p (a pointer to a VarDecl, Formal,
// IntegerConst, or RealConst) and two registers. Each register will
// be a String such as "%i3". This method generates instructions to
// load the desired quantity into "reg." The register "reg" may be
// either int or floating. The register "reg2" is an integer register
// that will be used as necessary. This routine assumes that
// IntegerConsts will only be loaded into integer regs, so it does not
// check any mode information.
//

void getIntoAnyReg (Ast.Node p, String reg, String reg2) ...

// storeFromAnyReg (p, reg, reg2)
//
// This method is passed p (a pointer to a VarDecl or Formal) and two
// registers. Each register will be a String such as "%i3". This method
// generates instructions to store the "reg" into the variable.
// The register "reg2" must be an integer register and must be
// different from "reg"; it will be used if necessary.
//

void storeFromAnyReg (Ast.Node p, String reg, String reg2) ...

Approach to Implementing “Emit.java”
Here is the order in which I implemented the IR instructions.

The first test file to get working is simple.pcat. This PCAT program simply prints a couple of
messages and it requires only four different IR instructions to function: IR.mainEntry,
IR.mainExit, IR.writeString, and IR.writeNewline.

Next, work on compiling the file write.pcat, which additionally uses the IR.writeInt,
IR.writeFloat, IR.writeBoolean, and IR.assign instructions.

CS-322 Compiler Design

Page 12

Then, get the test programs goto1.pcat, goto2.pcat, and goto3.pcat working. These programs will
require the conditional and unconditional branch instructions. After this you will have enough to
compile programs with basic IF and WRITE statements; many of the remaining test files use IF
and WRITE statements, so life will be simpler if you get them working first.

Then, move on to the binary1.pcat, binary2.pcat, div.pcat, neg.pcat, and itof.pcat tests; this
should allow you to compile programs containing arithmetic and Boolean expressions.

Then move on to call1.pcat, which uses the IR.procEntry and IR.returnVoid IR instructions.
The program call2.pcat will make sure that access to non-local variables is working and call3.pcat
will exercise the IR.returnExpr instruction.

Then move on to the tests param1.pcat, param2.pcat, and param3.pcat, which will exercise
parameter passing and returning, as well as non-local access. They will exercise the IR.param and
IR.formal instructions.

Then move on to the test programs, read1pcat and read2pcat, which will require IR.readInt,
IR.readFloat, and IR.loadAddress to be working.

Then, implement the IR.alloc, IR.loadIndirect, and IR.store instructions. Start by trying the
alloc1.pcat test file, which is a basic test of these instructions, and move on to alloc2.pcat.

The local.pcat test will exercise local and non-local variable accessing.

Finally, make sure all the error test programs work correctly.

After this point, you should be done implementing all the IR instructions. The following programs
should then run correctly with no further effort: array1, array2, array3, for, fact, primes, sort,
and speed.

The last test file is called yapp. The file yapp.pcat is a 2100 line PCAT program, which yields
20,000 lines of SPARC assembly. If you pass the other tests, then you should passé this one, too.
Since it takes quite a while to execute, you may wish to abort the runAll script rather than running
the yapp test to completion. (By the way, yapp.pcat is an SLR parser generator. It implements
the SLR parsing algorithms (include computation of FIRST and FOLLOW sets, sets of LR(0)
items, closures, etc.) discussed last term.)

Next we discuss what code we want to generate for each instruction.

IR.mainEntry
The code to be generated (i.e., the output to be printed to stdout) for the IR.mainEntry instruction
is shown by example below. The only variable is the frameSize, which is underlined in the
material below.

As you can see, when executed this code will begin by allocating a frame of the correct size by
subtracting from the %sp register. Then, we save a pointer to the base of this activation record
(%fp) into the variable called display0.

CS-322 Compiler Design

Page 13

 ! mainEntry
 .global main
 main: save %sp,-136,%sp
 set display0,%o0
 st %fp,[%o0]

The frameSize here is “136,” but this number will vary in other PCAT programs. Thus, you’ll
just need print statements to print the above 5 lines. To find the frameSize, just follow the arg1
field of the instruction to a Body node and use the frameSize that we saved in the Body in the
previous project.

IR.mainExit
The code to be generated for the IR.mainExit instruction is this:

 ! mainExit
 ret
 restore

IR.writeString
The code to be generated for the IR.writeString instruction is this:

 ! writeString str123
 sethi %hi(str123),%o0
 call printf
 or %o0,%lo(str123),%o0

The “str123” represents the name of the string being written and will vary among actual
instructions. This code loads register %o0 with the one, and only, argument to printf(), which it
then calls.

IR.writeNewline
A WRITE statement may print several things; these should all be followed by a single new-line.
For example:

WRITE ("a = ", a, " b = ", b);

should produce a single line of output.

The code to be generated for the IR.writeNewline instruction is this:

! writeNewline
 sethi %hi(strNL),%o0
 call printf
 or %o0,%lo(strNL),%o0

CS-322 Compiler Design

Page 14

IR.writeInt
The argument to the IR.writeInt instruction will be either an IntegerConst, VarDecl, or Formal.
To generate code for this instruction, first call getIntoAnyReg() to load the value into %o1. In the
example below, this produces the “set” instruction. Then produce the remaining three SPARC
instructions, which call printf, passing strInt (the format string) as the first argument in %o0 and
the integer value as the second argument in %o1.

! writeInt 12345
 set 12345,%o1
 sethi %hi(strInt),%o0
 call printf
 or %o0,%lo(strInt),%o0

In this example, getIntoAnyReg() generated a single set instruction since the operand was an
IntegerConst. If the operand had been a VarDecl or Formal, then getIntoAnyReg() would have
generated several instructions to get it into %o1. (For writeInt, the operand will obviously never
be a RealConst.) The routine getIntoAnyReg() requires two registers (called “reg” and
“reg2”). We can just use reg = reg2 = %o1.

Regardless of what instructions getIntoAnyReg() generates, the final three instructions (which set
%o0 to point to the format string and call printf) will always be the same.

IR.writeFloat
The code to be generated for the IR.writeFloat instruction will be something like this. (Refer to
the comments about the list of floats in the “Boilerplate” section of this document.) From this
example, you can see that the code was generated by first calling getIntoAnyReg() with reg = %f0
and reg2 = %o1. Then, the final two instruction (the “call” and the “nop”), which are always
the same, were generated.

! writeFloat 654.321
 set float2,%o1
 ld [%o1],%f0
 call writeFlt
 nop

IR.writeBoolean
The code to be generated for the IR.writeBoolean instruction will be something like this:

! writeBoolean 0
 set 0,%o0
 call writeBool
 nop

CS-322 Compiler Design

Page 15

IR.assign
The code to be generated for the IR.assign instruction will be something like this. First, we call
getIntoAnyReg() to get the RHS operand into %o0 (using reg2=%o0 as a work register if
necessary). Then, we call storeFromAnyReg() to generate code to move from %o0 to wherever
the result is (using %o1 as a work register if necessary). If both the RHS operand and the result
are local variables, we should get code like this:

! x := t1
 ld [%fp+-16],%o0
 st %o0,[%fp+-4]

IR.procEntry
The code to be generated for the IR.procEntry instruction will be something like this. Note that
“64” is the offset of the “display register” save area (DISPLAY_REG_SAVE_AREA_OFFSET)
in the activation record. The only things that vary are the procedure name, the frameSize and the
lexical level, which are underlined below.

! procEntry p13_foo,lexLev=4,frameSize=136
p13_foo: save %sp,-136,%sp
 set display4,%o0
 ld [%o0],%o1
 st %o1,[%fp+64]
 st %fp,[%o0]

IR.call
The code to be generated for the call instruction will be something like this:

! call p13_foo
 call p13_foo
 nop

IR.returnVoid
The code to be generated for the IR.returnVoid instruction will be something like this. Note that
“64” is the offset of the “display register” save area (DISPLAY_REG_SAVE_AREA_OFFSET)
in the activation record. Also note that we used display register “2” here, but this could be some
other number. The underlined material will be whatever the lexical level of this routine is.
Unfortunately, we don’t have that information in this instruction. But we do have it when we
process the IR.procEntry instruction. So you’ll need to create a field (you might call it
currentLexLevel) and set it when processing IR.mainEntry (to zero) and IR.procEntry.

CS-322 Compiler Design

Page 16

! return
 set display2,%o0
 ld [%fp+64],%o1
 st %o1,[%o0]
 ret
 restore

IR.goto
The code to be generated for the IR.goto instruction will be something like this:

! goto Label_1
 ba Label_1
 nop

IR.label
The code to be generated for the IR.label instruction will be something like this:

! Label_1:
Label_1:

IR.gotoiLE
The code to be generated for the IR.gotoiLE instruction will be something like this. Note that the
first two loads were generated by two calls to getIntoAnyReg() and would have be somewhat
different if the operands had been different.

! if x <= t1 goto Label_2 (integer)
 ld [%fp+-8],%o0
 ld [%fp+-12],%o1
 cmp %o0,%o1
 ble Label_2
 nop

The code for the other integer conditional branches is similar.

IR.gotofLE
The code to be generated for the IR.gotofLE instruction will be something like this. The code for
the other floating point branches is similar. The “s” at the end of fcmps indicates single-
precision. One can also use fcmpes to do the comparison and cause an exception if there are
problems (e.g., one operand is NaN). Note that there is a nop instruction inserted between the
compare and branch instructions.

CS-322 Compiler Design

Page 17

! if x <= y goto Label_31 (float)
 ld [%fp+-4],%f0
 ld [%fp+-8],%f1
 fcmps %f0,%f1
 nop
 fble Label_31
 nop

IR.iadd
The code to be generated for the IR.iadd instruction will be something like this. First, we call
getIntoAnyReg() to get the first operand into %o0 (using reg2=%o0 as a work register if
necessary). Then, we call getIntoAnyReg() to get the second operand into %o1 (using
reg2=%o1 as a work register if necessary). Then, we generate the “add” operation, taking its
arguments from %o0 and %o1 and placing its result in %o1. Finally, we call
storeFromAnyReg() to generate code to move whatever is in %o1 to wherever the result should
be (using %o0 as a work register if necessary).

If the two operands are local variables, we get something like this:

! t1 := y + z (integer)
 ld [%fp+-8],%o0
 ld [%fp+-12],%o1
 add %o0,%o1,%o1
 st %o1,[%fp+-16]

If the two operands are in constants, we get something like this:

! t2 := 123 + 456 (integer)
 set 123,%o0
 set 456,%o1
 add %o0,%o1,%o1
 st %o1,[%fp+-20]

If the two operands are non-locals, we get something like this:

! t3 := y + z (integer)
 set display0,%o0
 ld [%o0],%o0
 ld [%o0+-8],%o0
 set display0,%o1
 ld [%o1],%o1
 ld [%o1+-12],%o1
 add %o0,%o1,%o1
 st %o1,[%fp+-4]

Other binary operators are similar. In the case of floating operations, we need to get the first
operand into %f0 (using reg2=%o0 as a work register) and the second operand into %f1 (again
using reg2=%o0 as a work register). The “fadds” operation will place its result in %f1 and

CS-322 Compiler Design

Page 18

then we need to call storeFromAnyReg() to move the result from %f1 to wherever it is to be
stored (using reg2=%o0).

IR.idiv, IR.imod
I implemented integer div and integer mod by calling the routines .div and .rem as shown below,
since these routines have exactly the functionality we require for the div and mod operators in
PCAT.

! t17 := t15 DIV t16 (integer)
 ld [%fp+-72],%o0
 ld [%fp+-76],%o1
 call .div
 nop
 st %o0,[%fp+-80]

! t25 := t23 MOD t24 (integer)
 ld [%fp+-104],%o0
 ld [%fp+-108],%o1
 call .rem
 nop
 st %o0,[%fp+-112]

Note that the loading of %o1 (which was generated in getIntoAnyReg()) could certainly be
moved into the delay slot. One approach is to design a peephole-style optimizer to run after the
final code generation. It would work much like the peephole optimizer that ran over the IR
instructions.

IR.itof
To implement the integer-to-float conversion, I proceeded as follows. First, generate code to get the
integer value into %o0, by calling getIntoAnyReg(). Then, generate 2 instructions to store it in
the variable called temp, allocated in the boilerplate code. Then, generate instructions to load the
value into %f0 and convert it from integer to single-precision floating using the fitos instruction,
leaving it in %f0. Finally, I called storeFromAnyReg() to move the floating value to wherever it
should be stored.

I implemented itof by calling getIntoAnyReg() to start with. If it is passed an IntegerConst, it
won’t be able to generate code to move it into a floating reg. So instead I asked getIntoAnyReg()
to put the integer into an integer register (%o0). Then, I generated code to move it from %o0 to
temp and then load it into a floating register in separate steps.

! t1 := intToFloat (...)
 ,%o0
 set temp,%o1
 st %o0,[%o1]
 ld [%o1],%f0
 fitos %f0,%f0
 st %f0,[%fp+-16]

CS-322 Compiler Design

Page 19

Ideally, one would like to call getIntoAnyReg() to move the integer value straight into %f0,
without messing with temp. There are better ways to generate a code sequence for this instruction,
but I tried to keep the code as simple-minded as possible.

IR.formal
Originally, I had planned to pass parameters in registers %o0-%o5, following the SPARC
conventions for the “C” language. This convention is very efficient if the subroutine can simply
keep its parameters in the %o0-%o5 registers and never move them into memory. Unfortunately,
our simple-minded code generator would be significantly complicated by this approach. It is much
easier to generate code if we can assume that all variables are stored in the activation record
uniformly.

My original plan was to pass the first 6 arguments in the registers and then have the IR.formal
instruction generate the code to move the argument values from the %o0-%o5 registers into slots
in the activation frame, where they would then be treated identically to the other local variables.
Later, I realized that this plan would generate unnecessary loads and stores and that it would be
simpler to have the caller just move all the arguments (into the caller’s frame, with instructions in
the caller’s code). From there, they can be easily accessed by the callee’s code. One benefit of this
plan is that we don’t have to distinguish between the first six parameters and the remaining
parameters; they are all treated identically.

However, we still need to make sure that we allocate at least 6 words in each activation record for
holding the first six parameters, regardless of whether we actually need the all six slots. (And we
did this in the last project since it is the SPARC convention for calling “C” routines.) It might
seem unnecessary if we only call routines with fewer than 6 arguments, but it is necessary since our
PCAT routines may call “C” routines. (For example, we generate code that will call printf.) Our
compiler makes sure there are always at least six slots present, just in case printf wants to make
use of this space.

The bottom line is that all the arguments will be exactly where we want them–namely stored in the
caller’s frame–by the time we get into the called subroutine. Thus, the IR.formal instruction
expands into zero SPARC instructions. You should still copy the comment to the output, however.

! formal 1,x

Long discussion, short code sequence. I always like that.

IR.param
I implemented IR.param as shown by example below. I called getIntoAnyReg() to move the
value into %o0. Then I generated a “st” instruction to move it into the correct slot in the caller’s
activation record, depending on which parameter it is (e.g., parameter 1 goes into offset 68,
parameter 2 goes into offset 72, etc.) Use the INITIAL_FORMAL_OFFSET and
FORMAL_OFFSET_INCR constants.

CS-322 Compiler Design

Page 20

! param 1,123
 set 123,%o0
 st %o0,[%sp+68]
! param 2,456
 set 456,%o0
 st %o0,[%sp+72]

IR.returnExpr and IR.resultTo
The test file call3.pcat tests the ability to return values from subroutines. To return values, we need
the instructions IR.returnExpr and IR.resultTo.

The returned value can be returned in %o0, which is called %i0 in the callee’s register window. To
generate code for IR.returnExpr, we first call getIntoAnyReg() to move the returned value into
%i0. Then, we generate code similar to IR.returnVoid to restore the display register and return.
For example:

! return 123
 set 123,%i0
 set display2,%o0
 ld [%fp+64],%o1
 st %o1,[%o0]
 ret
 restore

Directly after an IR.call instruction, we will have an IR.resultTo instruction, which will tell us
where to put the returned value. We can generate the SPARC code by calling
storeFromAnyReg() to move the value from %o0.

! resultTo t2
 st %o0,[%fp+-8]

IR.readInt
The code generated for IR.readInt is almost identical to the code for IR.writeInt. In the following
example, note that t1 will contain the address into which to store the result; we do not put the result
in t1 itself. Also, we need to test the value returned by scanf() in %o0 to make sure it is non-zero.
(The value is the number of characters scanned; if it is zero, there was an error in the input and no
value was stored.)

! readInt t1
 ld [%fp+-12],%o1
 sethi %hi(strInt),%o0
 call scanf
 or %o0,%lo(strInt),%o0
 cmp %o0,0
 be runtimeError3
 nop

CS-322 Compiler Design

Page 21

IR.readFloat
The code generated for IRreadFloat is similiar:

 ! readFloat t2
 ld [%fp+-16],%o1
 sethi %hi(strFlt),%o0
 call scanf
 or %o0,%lo(strFlt),%o0
 cmp %o0,0
 be runtimeError3
 nop

IR.loadAddr
To implement the IR.loadAddr instruction, we must handle local and non-local variables. First, we
generate code to get the desired address into %o0, then we can call storeFromAnyReg() to move
it to wherever it should go. For example, asssuming j3 is a local variable and i3 is a non-local
variable, the following code sequences would be generated:

! t7 := &j3
 add %fp,140,%o0
 st %o0,[%fp+-12]

! t10 := &i3
 set display0,%o0
 ld [%o0],%o0
 add %o0,-12,%o0
 st %o0,[%fp+-24]

IR.alloc
To implement the IR.alloc instruction, we must generate a call to calloc(), which takes two
arguments. The first argument (in %o0) will be the count; the second argument (in %o1) will be
the number of bytes. We can just use a count of one. The returned pointer will be in %o0. We do
not need to test it for zero, since there will be separate IR instructions immediately following that
will do the test.

 86 ! t1 := allocate (...)
 87 set 1,%o0
 88 ,%o1
 89 call calloc
 90 nop
 91 st %o0,[%fp+-8]

CS-322 Compiler Design

Page 22

IR.loadIndirect
To implement IR.loadIndirect instruction, you’ll first need to call getIntoAnyReg() to move y
(the address) into %o0. Then you can generate an additional ld instruction to perform the indirect
fetch. Finally, you can call storeFromAnyReg() to move the fetched data to wherever it belongs.

! x := *y
 ,%o0
 ld [%o0],%o0
 ... %o0,...

IR.store
To implement the IR.store instruction, you’ll first need to load the value to be stored (y, in the
following example) into a register (%o0). Then you’ll need to load the address (x) into another
register (%o1). Finally, you can generate the st instruction to store the data in the location
indicated by the address.

! *x := y
 ... y,%o0
 ... x,%o1
 st %o0,[%o1]

Optional Extensions
I hope that some people will be able to complete this project well before the due date and will have
time to do additional optimizations above and beyond the simple code generation done by the black
box code. The exact nature and organization of your optimization code is up to you. Some ideas
will be discussed in class and I will be happy to talk to you individually. I think the simplest form
of optimization would be to implement the peephole optimizer if you did not get a chance to during
project 10.

However, after getting the main program working, I would prefer that people spend any extra time
going back and fixing other projects that they did not complete.

The output of your program will be compared to the output produced by the black box program.
Please begin by getting the program working as described here so that its output exactly matches
the .bak files. We could also assemble your target code and run it, comparing its output against the
expected output (which is also provided in directory tst). But if your target code is exactly
identical, there is no point; of course it will assemble and run the same way as the output from the
black box compiler. Even if you do extension or add optimizations, you must still turn in this first
version of Emit.java that exactly matches the .bak files.

You may also attempt doing some extensions or optimizations, but only after getting the base
program working. If you are doing any extensions, the requirement for your compiler is that it
should produce code that is functionally equivalent to the code produced by the black box compiler.
To test this, the target code your compiler produces can be assembled and run, using run2. The
output from the running program will be compared to the output of the executable produced by
black box compiler and it must be identical.

CS-322 Compiler Design

Page 23

Generator.class
If you were unable to complete the Generator.java file, you may use my Generator.class file
instead. However, you’ll need to modify the makefile to NOT compile Generator.java.

Grading
The primary consideration for grading will be correctness. The output of your program will be
compared to the output produced by the “black box” program, Main.jar. Your output should
match exactly.

Your code should also be well organized and clearly documented.

Be sure to follow my style guidelines for commenting and indenting your Java code. There is a
link on the class web page called “Coding Style for Java Programs.” Please read this document.
Also look at the Java code I am distributing for examples of the style we are using in this class.

During testing, the grader will compile your Emit.java file and link it with my files, including my
Lexer.class, Parser.class, Checker.class, and Generator.class.

[IF YOU DIDN’T TAKE CS-321 LAST TERM, IGNORE THE NEXT PARAGRAPH...]

I encourage you to use your own files during testing, but I also strongly encourage you to test your
Emit.java with my Lexer.class, Parser.class, Checker.class, and Generator.class, just to make
sure it works correctly with them. While there should be no difference, it still seems like a good
idea.

Standard Boilerplate...
It is considered cheating to decompile or look inside any .class or .jar file I provide. If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 11 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

CS-322 Compiler Design

Page 24

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements.

Do not submit multiple times.

Please keep an unmodified copy of your file on the PSU Solaris system with the timestamp intact.
This is required, in case there are any “issues” that arise after the due date.

In other words: DO NOT MODIFY YOUR “Emit.java” FILE AFTER YOU SUBMIT IT.
You can create a p10 directory, copy all files over and keeping working, if you need to.

Work independently: you must write this program by yourself.

