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Project 10:
Intermediate Code Generation (Part 3)

Due Date:  Tuesday, February 28, 2006, Noon
Duration:  Two weeks

Overview
In this project, we will finish generating the intermediate representation and will take care of some
other tasks (such as laying out the activation records and assigning offsets to local variables).

File you are to modify:
Generator.java

Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p10

IR.java
Changed to including additional printing.

Peephole.java
This file relates to an optional extension: a “peephole optimizer” for the IR instructions.  If
you are not doing the extension, just copy this file into your directory and compile it, along
with the other classes.  This file just contains a “dummy” class, which you can modify if
you have time after finishing the primary assignment.  (The black box Main.jar uses this
dummy code.)

Main.java
Altered to call Peephole.optimize and to print the variable offsets.

Lexer.java
Parser.java
Checker.java

Files you created last term.
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Lexer.class
Parser.class
Checker.class

Compiled versions.

Token.java
StringTable.java
SymbolTable.java
Ast.java
PrintAst.java
PrettyPrintAst.java
go
run

Unchanged.

makefile
Modified to deal with Peephole.java.

tst
runAll

Same as before, but altered for this project.  All the test programs from Project 9 are
included, along with several new test files.  (The output for the Project 9 test programs will
be different, due to new code added for this project.)

Main.jar
The new “black box” code.

Reducing the Number of Temporaries
In projects 8 and 9 we generated a lot of temporary variables.  Too many!

The first place that we are generating temporaries unnecessarily is in assignments to simple
variables.  Consider this source code:

i := j;

Previously, we generated this IR code:

! ASSIGNMENT STMT...
                t3 := &i
                *t3 := j

This can be “optimized” to the following IR code:

! ASSIGNMENT STMT...
                i := j

This optimization can occur only if the thing on the left-hand side is a simple variable.  If it is
something more complex (like an array or record dereference), then we will still need to generate
code as we did in projects 8 and 9, with the “indirect store” instruction.
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In the general case (which includes array and record dereferencing), the code for assignment
statements, genAssignStmt(), will call genLValue() to deal with the left-hand side, which could
be quite complex.  You will call genLValue() to generate code for an L-value and it will return the
name of a temporary into which we have stored an address.  The code for genAssignStmt() can
then store indirectly using that address.

You should implement the optimization in genAssignStmt(); change it to look and see what the
left-hand side is.  If it is a simple Variable, it should avoid calling genLValue() and generate the
optimized version, using the IRassign instruction.  Otherwise, you can call genLValue(), which
returns a temporary.  Then genAssignStmt() will generate a IRstore instruction, instead of the
IRassign instruction.

Eliminating Temporaries for Constants
Another place that temporaries are created unnecessarily is for each constant in the source code.  In
the last project, the following source code:

i := j + 1;

resulted in this IR sequence:

! ASSIGNMENT STMT...
                t2 := &i
                t3 := 1
                t4 := j + t3            (integer)
                *t2 := t4

Using the optimization discussed in the previous section, this code will become:

! ASSIGNMENT STMT...
                t3 := 1
                t4 := j + t3            (integer)
                i := t4

In addition, we want to optimize the material that is underlined.  In this project, you should modify
the code generator to generate the following IR code:

! ASSIGNMENT STMT...
                t1 := j + 1             (integer)
                i := t1

In the last project, you were moving the constant into a temporary and then using the temporary. In
this optimization, you will just use the constant directly.  You should change genExpr() so that,
when applied to constants, it will return a pointer to the AST node representing the value.  This
constant will then be used by whichever routine called genExpr().

Up to now, we have said repeatedly that genExpr() will always return the “place” (i.e., the name
of a variable) where the computed result will be found.  That is, we said that genExpr() will return
a pointer to either the VarDecl or the Formal node describing the variable.
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To perform this optimization, this “invariant” will be relaxed a bit.  Now genExpr() will return
either a variable (i.e., a pointer to a VarDecl or a Formal node as before) or a constant (i.e., a
pointer to an IntegerConst or RealConst node).

This optimization will affect these routines:

genIntegerConst()
genRealConst()
genBooleanConst() and
genNilConst()

(Some students may not have methods with these names.  Instead, they may have put the code to
deal with IntegerConst, RealConst, BooleanConst, and NilConst nodes directly into the
genExpr() method.)

For the NIL constant, genExpr() should return a pointer to an IntegerConst node with iValue
equal to zero.

Earlier, I suggested that you create three AST node of class IntegerConst at the beginning of
generateIR() and fill them in with iValues of 0, 1, and 4.  I suggested you call these constant0,
constant1, and constant4.  These nodes should be used as the return values of
genBooleanConst() and genNilConst().

For the “nil” value, you can just use the IntegerConst node with iValue of 0, since a null pointer
in PCAT will be implemented with a 32-bit integer equal to zero.  When you are generating the
code for array dereferencing address calculations (as discussed later in this document), you’ll need
an IntegerConst with iValue equal to 4; you can use constant4 at that time.

The processing for BooleanConsts should be improved in the same way as for integer and real
constants, to eliminate unnecessary temporaries.  For example, the following source:

b := true;

should now generate:

! ASSIGNMENT STMT...
                b := 1

instead of:

! ASSIGNMENT STMT...
           t2 := &b
           t3 := 1
           *t2 := t3

More complicated stuff, like “IF b THEN...” and “b := (i<j):” is still handled the same way with
branches.
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Runtime Errors and Boilerplate
Several things can go wrong during program execution.  For the PCAT language, the following five
errors may arise during runtime:

runtimeError1: Allocation failed
Memory allocation failed during array or record construction.

runtimeError2: Pointer is NIL
This may be detected during array dereferencing or during record dereferencing.

runtimeError3: READ statement failed
A call to the system routine to get input has failed.

runtimeError4: Array index out of bounds
During array dereferencing, the index expression was less than zero or too large.

runtimeError5: Count is not positive in array constructor
During array construction, the count expressions are evaluated.  They must be >= 1.

We will handle runtime errors as follows.  When producing the target “.s” file, we will include
some “boilerplate.”  This is canned material which will always be included in every output file
produced by this compiler.  It is “canned” in the sense that it is fixed and unchanging and could be
produced by a single, giant print statement.

Among other things, the boilerplate will contain 5 labels: runtimeError1, runtimeError2, ...
runtimeError5.  After each label, the boilerplate will include code to print out a nasty little
message (like “Allocation failed” or “Pointer is NIL”) and terminate program execution.

During program execution, if anything goes wrong, we’ll simply branch to the appropriate label.
More precisely, the compiler will generate code to test and branch to labels such as runtimeError1
if certain conditions are detected at runtime.

It is usually desirable to print out more information than just a fixed message when a runtime error
arises.  At a minimum, the source code line number should be printed.  (At least our PCAT system
will give a descriptive error message and terminate gracefully; I once heard of a language that would
either keep on executing or print out something cryptic and uninformative like “core dumped.”
“Core” was an ancient form of digital memory using small, doughnut-shaped magnets, used back
when this language was popular...  I digress...)

When some unrecoverable error occurs during runtime execution, it is very helpful to the
programmer to print out a source code line number.  One technique to print the line number works
as follows.  A single register (or static storage location) is set aside to hold an integer.  This word
will always contain the current source code line number.  Every time the compiler begins to generate
code for a statement (e.g., in genStmts()), it generates an instruction or two to save the number of
the current source line in this word.  Happily, we have this information stored in the pos field of
each AST node.  Our boilerplate might then contain code that, when a runtime error occurs, prints
the appropriate error message and also prints the value of this saved word under the rubric “Error
at source code line %d...”  There are many variants on this scheme.  If several source code files are
involved, additional words would be necessary to identify which source code file was involved at the
time of the error.



CS-322 Compiler Design

Page 6

We will not save or print source code line numbers during runtime errors; we’ll just print a
message.

Record Offsets and Sizes
Each field in a record will be 4 bytes in our implementation of PCAT.

Recall that the RecordType node points to a linked list of FieldDecl nodes (with one FieldDecl
node per field).  A new field called offset has been added to each FieldDecl node and a field called
size has been added to the RecordType node.  You must set these appropriately, by walking the
linked list of fields.

The Body node contains pointers to several linked lists: typeDecls, varDecls, procDecls, and
stmts.  Notice that you must process the typeDecls before the varDecls and stmts so that record
offsets will be filled in before they are needed.

Representation of Arrays and Records
Consult the following diagram:

N
a [0]
a [1]
a [2]
a [3]

a [N-1]

f1
f2

fk

•••

•••

a:

y:

HEAP STORAGE

var a: array of ...

var y: record
         f1: ...;
         f2: ...;
         ...
         fk: ...;
       end;

N+1
  Words
    Total

One
  Word
    Per
      Field

Layout of Arrays and Records
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Consider the two definitions:

type MyArr is array of ...;
          MyRec is record
                     f1: ...;
                     f2: ...;
                   ...
                     fk: ...;
                   end;
     var x: MyArr := ...;

var y: MyRec := ...;

Array-valued variables (like x) and record-valued variables (like y) will each be allocated 4 bytes.  In
this example, the variables x and y are local variables, but we could have similar variables as formal
variables or as elements in other record and arrays.  In any case, each variable will be given 4 bytes,
either in an activation record, or within another record or another array.

At runtime, x and y will either be NIL (i.e., zero) or will point to a block of words which have been
allocated in the heap.  The only way to allocate words in the heap is with an array constructor (using
the T {{ ... }} syntax) or with a record constructor (using the T { ... } syntax).

At the time an array constructor is executed, we will know how many elements the array will have,
but we may not know this number until runtime (in PCAT, anyway).  With record constructors, we
will know at compile-time how many bytes are to be allocated.  It will be 4 times the number of
fields.

An array of N elements will be stored in N+1 words.  The extra word will store the N, the size of
the array.  This will be used in an “array index out-of-bounds check” every time the programmer
tries to access one of the elements using the array dereferencing (i.e., a[i] or “array indexing”).

The elements of an array are numbered from 0 to N-1.  The diagram is drawn with higher (larger)
addresses toward the bottom of the page.

A record with K fields will be stored in K*4 bytes.

L-Values and R-Values
There are only three kinds of node that can appear wherever an L-value is allowed: Variable,
ArrayDeref, and RecordDeref.  Here is an example of source code corresponding to each of
these:

x
a[i]
r.f

Of course, each of these kinds of L-value can be used as an R-value.  For example, in the following
source code, we see array dereferencing used as an R-value:

x := a [ (i+1)*3 ];
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In the following source code, we see record dereferencing occurring in an L-value:

person.address := y;

Of course a variable by itself can occur as either an L-value (like x in the first example) or as an R-
value (like y in the second example).

If an L-value is used as an R-value, then the AST data structure will contain a ValueOf node.  The
ValueOf node has an lValue field which will point to either a Variable, an ArrayDeref, or a
RecordDeref node.

The code generation for L-values is handled in genLValue().  The code generation for R-values is
handled in genValueOf().

In my own version of Generator.java, I did not have routines named genArrayDeref() or
genRecordDeref() or genVariable().  (Actually, I got rid of them.)  Instead, it seemed clearer to
include the necessary code directly in genLValue() and genValueOf().

The simplest approach to genValueOf() is to do the following:

(1) Call genLValue() on the lValue field.  It will return a temporary (call it temp1) after
generating the IR instructions to move an address into it.

(2) Create a new temporary.  Call it temp2.
(3) Generate a loadIndirect instruction to move the data at the address in temp1 into temp2.

However, you should make an optimization when the L-value in question is a simple variable.

To accomplish this, put a switch statement into genValueOf() and take a look at what kind of node
the ValueOf is pointing to.  There are three cases: Variable, ArrayDeref, and RecordDeref.

For the ArrayDeref and RecordDeref cases, you’ll need to do steps (1) (2) (3) above.

For the Variable case, simply return the variable (as represented by its VarDecl or Formal node),
avoiding the call to genLValue() and the loadIndirect instruction.

Record Dereferencing
Next, look at a record dereference used as an L-value.  Consider the following PCAT source code:

r.f3 := i + 123;

The variable r will be a word containing a pointer to a record stored in the heap, or possibly NIL.
The fields in a record are at offsets 0, 4, 8, 12, 16, ...  For this record type, assume that f1 has been
assigned to offset 0, f2 to offset 4, f3 to offset 8, etc.

You should generate the following code:

! ASSIGNMENT STMT...
                if r = 0 then goto runtimeError2    (integer)
                t1 := r + 8                         (integer)
                t2 := i + 123                       (integer)
                *t1 := t2
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The test and branch checks to make sure the programmer is not trying to dereference a NIL pointer.

The second instruction computes the address of the word in question and puts it in temporary t1.
The third instruction computes the right-hand side of the assignment and moves the result into
temporary t2.  The final instruction completes the assignment by moving the value into the word
pointed to by the address in t1.

The first two instructions are generated by genLValue().  The third instruction is generated by the
call to genExpr().  The final instruction is added by genAssignStmt().

Notice that a new IntegerConst node (in this case with iValue = 8) was needed to use as arg2 of
the add instruction.  As you generate these instructions, you’ll have to call new
Ast.IntegerConst() to allocate a new IntegerConst node and set its iValue field to whatever the
offset is.  (In this case, it was 8 but other fields will have different offsets.)

One optimization you need to perform is to watch for offset 0 and deal with it separately.  In the
source code:

r.f1 := i + 123;

we see a field f1 whose offset is zero.  You should eliminate the add instruction since it would just
be adding zero.  Instead, generate this code:

! ASSIGNMENT STMT...
                if r = 0 then goto runtimeError2     (integer)
                t1 := i + 123                        (integer)
                *r := t1

Notice that RecordDeref and ArrayDeref nodes themselves contain an lValue field.  In general,
the thing being dereferenced could be something besides a simple Variable.  So, when dealing
with a RecordDeref in genLValue(), we will first need to call genLValue() to generate code for
the L-value.  This recursive call to genLValue() will return the name of the variable containing an
address.  Then you can generate the test for zero and so on.

For example, in the following source code, r2 is a record whose f2 field is itself a record.

r2.f2.f3 := i + 123;

In processing this, genLValue will call itself recursively.  We can show the calling history (the
“activation tree”) for this example as follows:

genAssignStmt (“r2.f2.f3 := i + 123;”) {
genLValue (“r2.f2.f3”) {

genLValue (“r2.f2”) {
}

}
genExpr (“i + 123”) {
}

}

As these methods are executed, they will generate these IR instructions.



CS-322 Compiler Design

Page 10

      1.    if r2 = 0 then goto runtimeError2    (integer)
      2.    t1 := r2 + 4                         (integer)
      3.    t2 := *t1
      4.    if t2 = 0 then goto runtimeError2    (integer)
      5.    t3 := t2 + 8                         (integer)
      6.    t4 := i + 123                        (integer)
      7.    *t3 := t4

Lines 1-2 compute the address of a word containing a pointer to a record containing an f3 field and
store it in temporary t1.  They are the result of the inner invocation of genLValue().

Look at how the outer invocation of genLValue() works.  It begins by making the recursive call
(resulting in lines 1 and 2).  Then, it needs to generate a loadIndirect instruction in line 3.  Now t2
contains a pointer to the record containing the f3 field.  Then genLValue() generates instructions
(in lines 4-5) to compute the address of the f3 field in that record.  Finally, genLValue() returns
this address in temporary t3.

The remaining 2 instructions are produced by genExpr() and genAssignStmt().

Now consider the straightforward approach to generating code for following source code:

r.f3 := i + 123;

The method genAssignStmt() begins by calling genLValue() to deal with the left-hand side
(“r.f3”).  In the call to genLValue(), we see that we are dealing with a RecordDeref.  To deal
with the lValue field in that node (“r”), the obvious thing to do is to make a recursive call to
genLValue().  But note that genLValue() will always load the address of the thing in question
into a temporary and will return that temporary, even if it is a simple variable like in this example.
Such a recursive invocation of genLValue() would move the address of r into a temporary, (t1 in
the code below).  Then the main call to genLValue() would have to generate a loadIndirect
instruction.  This would produce the following IR sequence:

t1 := &r
t2 := *t1
if t2 = 0 then goto runtimeError2   (integer)
t3 := t2 + 8                        (integer)
t4 := i + 123                       (integer)
*t3 := t4

The first two instructions are pointless and you must avoid generating them.  The desired code
(shown at the beginning of this section) just used r directly in the if-equal-goto instruction.  You
can avoid generating these two unnecessary instructions by inserting a test in genLValue() when
handling a RecordDeref.  Look to see if you have a simple Variable for the lValue.  If so, just
use it; if not, you’ll need to call genLValue() recursively to handle whatever the lValue is.  Then
you will have to generate a loadIndirect instruction.

Array Dereferencing
Now look at an array dereference used as an L-Value.  Consider the following source code:

a [i*3] := z;
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First, genAssignStmt() will call genLValue() to handle the lefthand-side, which is an
ArrayDeref node.  GenLValue() will need to call genExpr() to deal with the index expression
(“i*3”).

Here is the code you should generate for this source:

1.    ! ASSIGNMENT STMT...
2.                if a = 0 then goto runtimeError2       (integer)
3.                t1 := i * 3                            (integer)
4.                if t1 < 0 then goto runtimeError4      (integer)
5.                t2 := *a
6.                if t1 >= t2 then goto runtimeError4    (integer)
7.                t2 := t1 * 4                           (integer)
8.                t2 := t2 + 4                           (integer)
9.                t2 := a + t2                           (integer)
10.               *t2 := z

First, in genLValue() we will generate a test to see if the current value of the variable a is NIL (i.e.
zero).  If so, we must branch into the boilerplate code to deal with the error.  Next, genLValue()
will call genExpr() to deal with the index expression (“i*3” in this example).  genExpr() will
generate the assignment to t1 (line 3) and will return t1.  Back in genLValue(), we will then
generate the instructions in lines 4-6 which test to make sure the computed index falls within 0 ≤
index < N.

Next, we need to generate instructions to compute the address of the correct word.  At this point
(before line 7), t1 contains the index.  We need to multiply it by 4 and add 4 to bump past the initial
word which stores the array size.  Then, we add it to the address of the array in the heap in line 9.
Finally, we can return the temp containing the computed address from genLValue().

Also notice that t1 is whatever temporary got returned from genLValue()’s call to genExpr().
Due to our optimization of temporaries, as discussed earlier, the thing that gets returned from
genExpr() might also, in general, be an IntegerConst instead of a variable.  This is why we
created a new temporary (t2) in genLValue(), instead of performing the computation directly in
the temporary returned from genExpr() (which was t1).

After returning from genLValue(), genAssignStmt() will generate the instructions to evaluate the
righthand-side (there are none needed in this example) and the finally store instruction in line 10.

An ArrayDeref node contains an lValue field, so in general you need to call genLValue() to deal
with it.  Then you need to generate a loadIndirect instruction.  However, it is often the case that the
lValue is a simple Variable (like “a” in this example).  To avoid generating poor code, you
should include a special case test to see if the lValue field happens to point to a Variable node.  If
so, you can use the variable directly, otherwise call genLValue() recursively and generate a
loadIndirect into a new temporary.  This special case test is analogous to the test for
RecordDerefs discussed in the previous section.

Assigning Offsets to Variables and Formals
The diagram titled “Activation Record Layout” shows where in the activation record we will store
the local variables and the formal parameters.  Normal local variables (i.e., user-defined and
temporary variables) will be stored at offsets: -4, -8, -12, -16, ...  Formal variables will be stored at
offsets: 68, 72, 76, 80, ...
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A new field, offset, has been added to VarDecl and Formal nodes.  You must include the code to
set these offset fields.

The following lines where placed in the starter file, Generator0.java, to aid in this process:

    static final int INITIAL_VARIABLE_OFFSET      =  -4;
    static final int VARIABLE_OFFSET_INCR         =  -4;
    static final int INITIAL_FORMAL_OFFSET        = +68;
    static final int FORMAL_OFFSET_INCR           =  +4;
    static final int REGISTER_SAVE_AREA_SIZE      = +64;
    static final int DISPLAY_REG_SAVE_AREA_OFFSET = +64;

A new method called printOffsets() has been added to IR.java to print out all the offset
information.  The main() method has been modified to call printOffsets() right after it calls
generateIR().  The result is a printed listing of all variables and formals along with their offsets.
For example:

64
Bytes

Z1
•••

Z6
Z7
•••

ZP
UNUSED

YN
•••

Y1

X1
•••

XM

%sp

%sp+64
%sp+68

%sp+92

%fp-4
%fp

%fp+68

Register Window
   Save Area

“Display Register” Save Area

Optional Alignment Word

Space for arguments to routines
“foo” will call (e.g. “bar”)
[Minimum 6 words, maybe more]

Space for Locals
   and Temporaries

Space for foo’s formals

Frame for
“foo”

Frame for
foo’s caller

procedure foo (x1, x2, ..., xM) is
    var y1, y2, ..., yN
    begin
        ... bar (z1, z2, ..., zP)...
    end

Activation Record Layout
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Printing Offset Information...
  MAIN BODY:
    FrameSize = 128
    Offsets of local variables:
      -4        w
      -8        x
      -12       y
      -16       z
      -20       t1
      -24       t2
      -28       t3
      -32       t4
  PROCEDURE p1_foo1:
    FrameSize = 112
    Lex Level = 1
    Offsets of formals:
      68        a
      72        b
      76        c
    Offsets of local variables:
      -4        i
      -8        j
      -12       k
      -16       t5
      -20       t6
  PROCEDURE p2_foo2:
    ...

Computing the Size of Activation Records
A field called frameSize has been added to the Body node and you need to set it correctly.  This
field will be used when you generate target code for procEntry and mainEntry in a later project.
At that time, you will take the frameSize and plug it directly into the “save” SPARC instruction
that you will generate.

You can perform the frameSize computation in genBody() using the global variable called
maxNumberOfArgsUsed.  While processing the VarDecls and the statements in a Body, you
will occasionally run into a CallStmt or a FunctionCall.  You’ll need to count the arguments and
update maxNumberOfArgsUsed accordingly.  When computing the frameSize, you might also
want to count the number of local variables (after the statements have been processed and all
temporaries have been created.  You should also use the above constants.

Assume that routine foo calls bar.  The activation record for foo must include enough space for the
arguments to bar.  But the activation record for foo does not need to contain any room for the
formal parameters to foo since these will be stored in the frame of the routine that calls foo.  After
processing all of the Body, maxNumberOfArgsUsed should tell how much space to allocate in
foo’s frame for arguments to routines it calls.  According to the calling conventions, you must
allocate at least 6 words here.  (Since our target code will call scanf, printf, and calloc, we must
follow the “C” calling conventions.)  [Clever hint: You can achieve this “max” function by
initializing maxNumberOfArgsUsed to 6 instead of 0!]
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The optional alignment word will be either zero bytes or four bytes, as necessary to ensure that the
frame size is an even multiple of 8.

Unique Procedure Names
Each PCAT source-level procedure will need a label to act as the target of a SPARC call
instruction.  We might consider using the name given by the programmer — this is what the “C”
language does.  This approach works for “C” since routines are never nested and therefore must
each have a different name.  However, in PCAT, routines may be nested.  We might have several
routines named “foo” in the same program!

We also have another problem.  Our final SPARC program will have a number of symbols, such
as:

runtimeError1
runtimeError2
runtimeError3
...
Label_1
Label_2
Label_3
...
str1
str2
str3
...
float1
float2
float3
...

What if the PCAT programmer happens to name one of his or her procedures “Label_4” or
“runtimeError2”?  According to the language definition, these are legal procedure names, yet we
do not want to have a conflict with one of the labels our compiler is introducing.

One approach is to just rename all procedures with names like

proc1
proc2
proc3
...

This guarantees that every name will be unique and will not conflict with other names, but it makes
the resulting SPARC code hard to read and/or debug.  If the programmer tries to debug the
compiled code (say with “gdb” or “ddd”), the source level names would be nice to have.

The approach we will take is to combine the source name with an automatically generated name.
We’ll end up with names like:
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p1_foo
p2_readArray
p3_quickSort
p4_foo
p5_partition
...

This approach allows the source name to show through, but also ensures that every procedure will
have a unique name which will not conflict with other names in the SPARC program.  We have
chosen “p” for “procedure” to make it clear that the name refers to a procedure and not, say a
label.

To implement this approach, you might create and add a new method to Generator.java:

String newProcName (String sourceName);

When passed a procedure name (like “foo”), this method will create a String such as “p47_foo”,
where the “47” will be a sequentially generated unique integer.  This method would maintain a
static counter which it increments.  If called again, with “bar” as the argument, it would return
“p48_bar”.

The programmer-defined routine names show through, even though now all names will be unique.
Because of the “p” prefix, these names will be recognizable as procedure names and will never
conflict with other names occurring in the SPARC output (like “Label_5,” “runtimeError3,”
“str4,” or “float7”).

[ Existing compilers often do something similar, but the prefixes they choose are sometimes a little
obscure.  Here are some labels generated by a C++ compiler:

LC0
LC1
LC2
_main
LFB1
LCFI0
LCFI1
LCFI2
L1$pb
LFE1
L_printf$stub
L0$_printf
L_printf$lazy_ptr

]

As each ProcDecl is processed, you should alter its id field to point to the new name:

procDecl.id = newProcName (procDecl.id);

I don’t really like altering a field that has been previously set, but I feel that, in this case, it is
preferable to adding yet another field to the AST node data structures.  Note that in
Generator.java, we are never using the procDecl.id field, except possibly during printing.  The
lookup and linking of CallStmts and FunctionCalls to their ProcDecls was done earlier during
type checking in Checker.java.
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The “alloc” IR Instruction
The following IR instruction:

x := alloc (n)

will cause n bytes to be allocated on the heap and a pointer to the bytes to be stored in variable x.  If
the allocation fails for any reason (such as “heap full”), zero will be stored in x.

You can create this instruction with the following:

IR.alloc (x, n);

The result field (e.g., “x”) should be a VarDecl node.  The arg1 field (e.g., “n”) should be a
VarDecl or IntegerConst node.

This instruction will be used by array constructors and record constructors.

 When we generate SPARC code, the alloc IR instruction will be translated into a call to the
“malloc” or “calloc” routines, which should be familiar to “C” programmers.

By the way, PCAT has no facility for explicitly “free”ing arrays or records, although you might
envision adding something like this to the language.  More likely, we would run PCAT in an
environment with an automatic garbage collector.

In this course project, we will not worry about freeing storage.  We will allocate and allocate, in the
hope that the heap will always be big enough.  If any allocation should fail, we will at least get a
reasonable error message (runtimeError1: “Allocation failed”).

Record Construction
Consider the following source statement, involving a RecordConstructor expression:

rec := RecType { f1 := 123; f2 := 23.45; f3 := false };

For this, you should generate the following IR code:

! ASSIGNMENT STMT...
         t1 := alloc (12)
         if t1 = 0 then goto runtimeError1   (integer)
         t2 := t1 + 0                        (integer)
         *t2 := 123
         t2 := t1 + 4                        (integer)
         *t2 := 23.45
         t2 := t1 + 8                        (integer)
         *t2 := 0
         rec := t1

The first two instructions allocate a block of memory on the heap and check to make sure that the
allocation succeeded.  From the RecordConstructor node, you can get to the RecordType node



CS-322 Compiler Design

Page 17

describing the record to be allocated (via myDef->TypeDecl.type).   The number of bytes to
allocate comes from the size field in this RecordType node.

The RecordType node also contains a pointer to a linked list of FieldDecl nodes, one for every
field in the type definition describing the record.  Likewise, a RecordConstructor node points to a
linked list of FieldInit nodes, one for each field assignment in the record constructing expression.

There will be exactly one field assignment for every field in the record.  (Fortunately, we checked
that during type checking!)  Each FieldInit node therefore will correspond to exactly one
FieldDecl node.  (Note that the two linked lists may be in different orders.)

Fortunately, during type checking, we saved a pointer from the FieldInit node to the corresponding
FieldDecl node in a field called myFieldDecl, in the FieldInit node. The myFieldDecl field of
each FieldInit should point to the FieldDecl node with the same field id.

Given the myFieldDecl field, generating the above instructions becomes easy!

In a loop, you’ll need to walk the list of FieldInits.  For each, first call genExpr() to generate the
code for the expression.  Then generate the IRiadd instruction and the IRstore instruction.

Finally, genRecordConstructor() will need to return a temporary containing a pointer to the
newly allocated record.

Array Construction
Here are two  examples showing array constructor usage in PCAT:

a1 := MyArray1 {{ 100 OF –1 }};
a2 := MyArray2 {{ 4.5, 6.1, 3.0, 2.3, 4.0 }};

In general, an array constructor expression will look like this:

Type {{ count1 OF expr1,  count2 OF expr2, ..., countK OF exprK }}

Each of the counti and expri are nested sub-expressions.  As such, they may contain arbitrary
computation, including calls to functions, and so on.  The PCAT definition specifies that they must
be evaluated in the lexical order given.  So you will need to call genExpr() for each of these 2K
expressions in exactly the order the corresponding sub-expressions appear in the source.

genExpr (count1);
genExpr (expr1);
genExpr (count2);
genExpr (expr2);
...
genExpr (countK);
genExpr (exprK);

Recall that an array constructor is represented by an ArrayConstructor node which points to a
linked list of ArrayValue nodes.  Each ArrayValue node has pointer to a countExpr and a
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valueExpr.  The countExpr is optional, but for now assume that it is present in each of the K
ArrayValue nodes.

You cannot allocate the block of memory on the heap (where the array will be stored) until after you
have evaluated all of the count expressions, since you’ll need that information to compute how
many bytes to allocate.

To help out, I have added two new fields (called tempCount and tempValue) to each
ArrayValue node.  One approach is to walk the linked list of ArrayValue nodes twice.  During
the first list traversal, you will call genExpr() twice for each node.  You’ll need to save the results
(i.e., the temporaries into which the results were placed) in the two new fields for use later during
the second list traversal.  Also, as you walk this list the first time, you can generate the code to
compute the size of the array.

Here is an attempt to show the code you should generate in genArrayConstructor().  It involves
four new temporaries (called t1, t2, t3, and t4 here) in addition to whatever temporaries are created
by calls to genExpr().  The code in the two boxes is somewhat schematic and will be repeated
several times.  In particular, the code in the first box will be repeated K times, once for each count-
value pair.  The code in the second box will also be repeated K times.

t1 := 0
tcnt := ...genExpr(countExpri)...
if tcnt ≤ 0 then goto runtimeError5
t1 := t1 + tcnt
tval := ...genExpr(valueExpri)...
t2 := t1 * 4
t2 := t2 + 4
t2 := alloc (t2)
if t2 = 0 then goto runtimeError1
t3 := t2
*t2 := t1
t4 := tcnt

label: t2 := t2 + 4
*t2 := tval
t4 = t4 - 1
if t4 > 0 then goto label
... := t3

Your genArrayConstructor() routine will proceed as follows.  After generating the first IR
instruction, you should walk the linked list of the ArrayValues.  (This is the “first walk” of this
list.)  The instructions in the first box are generated once for each ArrayValue, so these 4
instructions will be repeated K times.

For each ArrayValue node, you’ll call genExpr() twice and save the returned temporaries’ names
in tempCount and tempValue.  As you go through the list, you’ll also generate the instructions to
compute the number of elements in the array.  These instructions will add to and store the result
into temp t1.

Next, you’ll generate code to compute the size of the array in bytes into t2.  Then you’ll call
alloc() and test the returned pointer.  Then save a copy of the pointer (using t3) so that you’ll have
a pointer to the new array after you are done initializing it.  Your genArrayConstructor() will end
up returning t3 to be used by the surrounding expression.  Then you’ll generate the instruction to
save N, the number of elements in the array, in the first word.  The pointer t2 will be used to index
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through the array as you walk through it initializing all the elements.  Just before you hit the second
box, t2 is pointing to the word containing N.  You’ll need to increment t2 by 4 before using it each
time.  (Alternatively, one could put the add instruction after the store, but this would result in an
extra add at the beginning, to get past the word containing N, and an unnecessary add at the end.)

Next, walk the linked list of ArrayValue nodes a second time.  For each, you’ll generate the code
in the second box.  Thus, the code in the second box (shown only once) will actually be repeated K
times.  This means that you will create K new labels.  For each count-value pair, you will generate a
small loop to initialize the right number of words in the array.

Notice that the first box is repeated for each of the K nodes in the ArrayValues linked list.  This
means that you’ll create K temporaries called tcnt and K temporaries called tval, during the first
walk.  Next, you walked the linked list a second time and generated the instructions in the second
box K times.  You’ll need to remember all these temporaries between their creation (during the first
walk) and use in the instructions in the second box (during the second walk).

The ArrayValue node has 2 fields (called tempCount and tempValue) which are these just for
that purpose.  In these fields, you may save the temporaries you create during the first walk of the
linked list for use during the second walk of the linked list.

Finally, genArrayConstructor() can return the pointer to the array (t3).

Matters are somewhat complicated by the fact that the “count” expression may be missing.  If so, a
value of 1 is assumed.

The code in the first box is modified to simply increment t1 by 1:

t1 := t1 + 1
tval := ...genExpr(valueExpri)...

The code in the second box is modified to:

t2 := t2 + 4
*t2 := tval

As an example, consider the following ArrayConstructor expression:

a1 := T1 {{ 11, 12, 13, 14, 15 }};

The above scheme will generate the following IR code:
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! ASSIGNMENT STMT...
        t1 := 0
        t1 := t1 + 1                       (integer)
        t1 := t1 + 1                       (integer)
        t1 := t1 + 1                       (integer)
        t1 := t1 + 1                       (integer)
        t1 := t1 + 1                       (integer)
        t2 := t1 * 4                       (integer)
        t2 := t2 + 4                       (integer)
        t2 := alloc (t2)
        if t2 = 0 then goto runtimeError1  (integer)
        t3 := t2
        *t2 := t1
        t2 := t2 + 4                       (integer)
        *t2 := 11
        t2 := t2 + 4                       (integer)
        *t2 := 12
        t2 := t2 + 4                       (integer)
        *t2 := 13
        t2 := t2 + 4                       (integer)
        *t2 := 14
        t2 := t2 + 4                       (integer)
        *t2 := 15
        a1 := t3

Obviously, there is room for optimization when the count expressions are missing, but we will not
be doing it here.  At least this code will execute correctly.  The optimizations we will discuss in
class should be able to clean this code up.

String Constants
String constants can appear only in WRITE statements.  Consider this source:

write ("Hello, world!");
write ("i = ", i);

When you generate the boilerplate, you’ll need to generate something like this:

str1:   .asciz   "Hello, world!"
str2:   .asciz   "i = "

In order to facilitate this later, I have added two new fields to StringConst called next and
nameOfConstant, which you must fill in.

In this project, you must assign a unique name to each string constant in the PCAT source by
storing a Java String in the nameOfConstant field of each StringConst node.  You might create a
new method (perhaps called newStringName()) by copying and modifying the code from
newLabel().  Each string name should be of the form “strN” where N is an integer.
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In order to access the strings, you must build a linked list of StringConst nodes, using the next
field.  The static variable stringList will point to the head of this list.  (This variable was included
in the starter file, so you should have it in Generator.java.)

You need to set stringList and build the linked list as you encounter string constants.

I have modified printIR() to print out this linked list.  It produces output like this.  In my own
Generator.java, I add newly encountered strings to the head of the list, instead of the tail, since it is
easier and faster.  As a result, the string list ends up in reverse order.  (The assembler will place the
strings into memory in this backwards order, but of course that will not matter.)

=====  String List Follows  =====
   str2:  "i = "
   str1:  "Hello, world!"

Real Constants
We will deal with floating point constants (RealConst) nodes much the same way we deal with
StringConst nodes.  Like stringList, there is a global variable called floatList.  Each RealConst
has a next field.  You must build the linked list of RealConst nodes.  Every time you encounter a
RealConst, you need to add it to this list.

In addition, each RealConst has a field called nameOfConstant, which you must set to point to a
name.  You can create a routine (call it newFloatName()) that works like newStringName().
Every time it is called, it will return a name like “float1”, “float2”, “float3”, and so on.  Then you
can use it to set the nameOfConstantfield whenever you add the RealConst to the growing
floatList.

I have modified printIR() to print out the floatList.

The code that adds a StringConst or RealConst to the linked list can be short and clean, perhaps
like this:

    r.next = floatList;
    floatList = r;

This code makes the assumption that the constant is not already on the list.  Is this really true?  Will
we visit every StringConst node and RealConst node only once?  The answer should be “yes” if
our AST is really a “tree.”  However, our AST does contain some cycles.  Also, some nodes are
shared, making it DAG-ish.  Nevertheless, if you do the “natural thing”, you will visit each
StringConst and RealConst only once and there will be no problem with the above code.

[ WARNING:  What happens if your code does something “unnatural” and visits some
StringConst or RealConst more than once?  It is very likely that the above code will create a
circular linked list, instead of a finite linked list.  There will be no noticeable problem until my
printIR code tries to print the list out.  Then, printIR will infinite loop.  Since the loop will not
occur until after the code generation is complete, every single print statement you add to your code
to find the loop with get printed!  So, if you have problems looping in a program with
StringConsts or RealConsts, remember this paragraph!]
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Take a look at this source code:

var x, y, z: real := 12.34;

One way to deal with initializing expressions would be to treat this code like:

var x: real := 12.34;
    y: real := 12.34;
    z: real := 12.34;

Another approach is to treat it like:

var x: real := 12.34;
    y: real := x;
    z: real := x;

We have chosen the second approach because we only want the initializing expression to be
evaluated once.  If we had chosen the first approach, we would have created an AST with a shared
RealConst node!  Using the second approach, we only have shared ValueOf and Variable nodes,
which turns out to be safe.

The Read Statement
There are 2 new IR instructions concerned with input: readInt and readFloat.

Consider the following source code:

var i,j: integer := ...;
var x,y: real := ...;
...
read (i,j,x,y);

You should generate the following:

! READ STMT...
                t3 := &i
                readInt t3
                t4 := &j
                readInt t4
                t5 := &x
                readFloat t5
                t6 := &y
                readFloat t6

The readInt and readFloat instructions require (in their result fields) a variable containing a
pointer to the target word.  In other words, this variable should contain the address to be stored into.
The code to compute a temporary containing this address is naturally generated by a call to
genLValue().
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The Write Statement
There are five new IR instructions concerned with output: writeInt, writeFloat, writeString,
writeBoolean, and writeNewline.

Consider the following source code:

var x: real := ...;
var i: integer := ...;
var b: boolean := ...;
...
write ("Hello, world!");
write ("x = ", x*2.3, "i = ", i-45, "b = ", b);

You should generate the following:

! WRITE STMT...
                writeString str1
                writeNewline
! WRITE STMT...
                writeString str2
                t1 := x * 2.3           (float)
                writeFloat t1
                writeString str3
                t2 := i - 45            (integer)
                writeInt t2
                writeString str4
                writeBoolean b
                writeNewline

The writeString instruction requires a Java String in its result field.  This should be the name of
the string constant;  see the discussion of StringConsts above.

The writeInt, writeFloat, and writeBoolean instructions require a pointer to a variable in their
result field (or possibly an IntegerConst or RealConst — in other words, whatever gets returned
from genExpr()).

The writeNewline instruction expects no arguments.  It must be generated once at the end of every
WRITE statement.

Optional Extension: A Peephole Optimizer
In class, I will discuss the general idea behind peephole optimization.

As an optional extension for this project, you may implement a class that makes one (or possibly
several) passes over the list of IR instructions.  This class should be called Peephole() and should
contain a method called optimize(), which is called from main() after the call to generateIR().

I am providing a file called Peephole.java, which contains a dummy (“stub”) optimize method; if
you have time, you can modify this file to perform the peephole optimization an optional extension.
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The black box code Main.jar does not perform any peephole optimization; it just uses the dummy
file.

Standard Boilerplate...
The primary consideration for grading will be correctness.  The output of your program will be
compared to the output produced by the “black box” program, Main.jar.  Your output should
match exactly.

Your code should also be well organized and clearly documented.

Be sure to follow my style guidelines for commenting and indenting your Java code.  There is a
link on the class web page called “Coding Style for Java Programs.”  Please read this document.
Also look at the Java code I am distributing for examples of the style we are using in this class.

During testing, the grader will compile your Generator.java file and link it with my files, including
my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class.

[IGNORE THE NEXT PARAGRAPH]

I encourage you to use your own files during testing, but I also strongly encourage you to test your
Generator.java with my Lexer.class, Parser.class, Checker.class, and PrettyPrint.class, just to
make sure it works correctly with them.  While there should be no difference, it still seems like a
good idea.

It is considered cheating to decompile or look inside any .class or .jar file I provide.  If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 10 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code.  If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!!  I will be happy to clarify any of the requirements.

Do not submit multiple times.

Please keep an unmodified copy of your file on the PSU Solaris system with the timestamp intact.
This is required, in case there are any “issues” that arise after the due date.
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In other words: DO NOT MODIFY YOUR “Generator.java” FILE AFTER YOU SUBMIT
IT.

Work independently: you must write this program by yourself.


