Overview of the
SPARC Architecture

Harry Porter
Computer Science Department
Portland State University

Abstract
This document provides an overview of the SPARC architecture and instruction set.

Only a portion of the architecture is covered. The view presented here is simplified
to provide an abstraction that should be adequate for user-level programming.

Memory

Main memory is byte addressable. Addresses are 4 bytes (i.e., 32 bits), allowing for up to 4
gigabytes of memory to be addressed.

Every instruction is 4 bytes (i.e., 32 bits) long. Instructions must be word aligned. That is, their
addresses must be divisible by 4.

Bytes, Halfwords, Words, and Doublewords

Data is manipulated in 1, 2, 4, and 8 byte units called bytes, halfwords, words, and doublewords.

number number required aligned address
of bytes of bits alignment in binary
byte 1 8 none (any)
half 2 16 2 e 0
word 4 32 4 e 00
double 8 64 8 e 000

Date Printed: April 5, 2006 Page 1

The bits within a word are numbered from O (least significant) to 31 (most significant).

byte:
7 0
half (2 bytes):
15 0
| |
word (4 bytes):
31 0
| |
double (8 bytes):
63 0

Alignment

Halfword, word, and doubleword data must be aligned in memory. For example, a 4 byte word
value must be placed at an address that is divisible by 4, and a doubleword must be placed at an
address that is divisible by 8. The load and store instructions will cause error exceptions if an
attempt is made to move a halfword, word, or doubleword quantity to/from an address that is not
properly aligned.

Big Endian

The SPARC architecture is “Big Endian,” meaning that when a word-sized quantity is stored in 4
bytes of memory, the most significant byte is stored in the first byte (i.e., lowest numbered address)
and the least significant byte is stored in the last byte (i.e., the byte with the greatest address). In
other words, if a word is stored at address x, the most significant byte will be stored in byte x and
the least significant byte will be stored in address x+3.

Some other (non-SPARC) computers use “Little Endian” order, in which the least significant byte
is stored in the lowest numbered address.

Binary, Decimal, and Hex Notation

An integer may be represented many ways. Normally, we represent integers in decimal using 10
numeral symbols (0, 1, 2, 3,4, 5, 6,7, 8, and 9). The position (i.e., “place”) of each digit in the
representation is significant. The place values are: ones, tens, hundreds, thousands, and so on.

Integers represented in binary use only two numeral symbols (0 and 1). The bit in each place is
multiplied by a power of 2. Thus, the place values are: 1's, 2's, 4's, 8's, 16's, and so on.

Integers represented in hex use sixteen digits (0, 1, 2,3,4,5,6,7,8,9, A, B, C, D, E, and F). The

hex digit in each place is multiplied by a power of 16. Thus, the place values are: 1's, 16's, 256's,
4096's, 65536's, and so on.

Date Printed: April 5, 2006 Page 2

The first 16 numbers are shown represented in decimal, hex, and binary.

decimal hex binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OOTANANRWN—O
MMOAT»> ORI UN R W —O

— e
N W —O

Note that is takes exactly 4 binary digits to represent one hex digit. Thus, there is a simple and
immediate correspondence between numbers represented in binary and in hex. As a result, we
generally use hex notation to represent binary quantities. The translation between hex notation and
binary notation is trivial; the translation between binary and decimal requires computation.

number number example same example
of bytes of bits in hex in binary
byte 1 8 3A 0011,1010
half 2 16 3A0F 0011,1010,0000,1111
word 4 32 3A0F 12D8 0011,1010,0000,1111,0001,0010,1101,1000

In octal notation, three binary bits are represented with a number between O and 7. The octal system
is problematic since there is a mismatch between the 3 bits in an octal digit and the 8 bits in a byte.

In the SPARC assembler, numbers can be represented in any base; the assembler will convert them
all to binary.

Decimal: 1234

Hex: 0x04D2, 0x04d2 (capitalization is not important)
Octal: 02322 (A leading zero indicates octal)

Signed Numbers

A byte (or halfword, or word) contains a bit pattern which may be interpreted either as an unsigned
integer or as a signed integer.

Signed integers are represented using the “two's complement” system. The following discussion
refers to 32 bit quantities, but the ideas apply analogously to other sizes of data, too.

Date Printed: April 5, 2006 Page 3

The table below shows how 4-byte signed numbers are represented.

bit hex value
pattern representation (in decimal)
0111...1111 7FFF FFFF 2,147,483,647
0111...1110 7FFF FFFE 2,147,483,646
0111...1101 7FFF FFFD 2,147,483,645
0000...0011 0000 0003 3
0000...0010 0000 0002 2
0000...0001 0000 0001 1
0000...0000 0000 0000 0
1111...1111 FFFF FFFF -1
1111...1110 FFFF FFFE -2
1111...1101 FFFF FFFD -3
1000...0010 8000 0002 -2,147,483,646
1000...0001 8000 0001 -2,147,483,647
1000...0000 8000 0000 -2,147,483,648

The most significant bit (bit 31) is the sign bit: O=positive (or zero), 1=negative. Note that there is
always one more negative number than there are positive numbers.

The algorithm for addition and subtraction is the same for signed and unsigned numbers. Thus,
there is only one instruction for addition (and not one for signed addition and one for unsigned
addition).

To negate a signed number, the algorithm is: flip all the bits and then add one. For example, to
negate 2:

2= 0000 0000 0000 0000 0000 0000 0000 0OO1O0
flipping bits= 1111 1111 1111 1111 1111 1111 1111 1101
adding one = 1111 1111 1111 1111 1111 1111 1111 1110

The result is just the two's complement representation of -2. Going from negative to positive works,
too:

2= 1111 1111 1111 1111 1111 1111 1111 1110
flipping bits= 0000 0000 0000 0000 0000 0000 0000 0001
adding one = 0000 0000 0000 0000 0000 0000 0000 0O1O0

Every number can be negated except the most negative number. The result of trying to negate the
most negative number gives that number itself:

-2,147,483,648 = 1000 0000 0000 0000 0000 0000 0000 0000
flipping bits = 0111 1111 1111 1111 1111 1111 1111 1111
adding one = 1000 0000 0000 0000 0000 0000 0000 0000

Date Printed: April 5, 2006 Page 4

The range of values that can be represented depends on the number of bits being used:

byte half word
total 28 216 232
number =256 = 65,536 =4,294,967,296
of values = 64K =4G
largest 27-1 215-1 2311
positive =127 =32,767 =2,147,483,647
number = 32K-1 =2G-1
most 27 215 231
negative =-128 =-32,768 =-2,147,483,648
number =-32K =-2G

Load Store Architecture

The SPARC uses a “load-store” architecture. Operations (such as arithmetic and logical
functions) can only be performed on data stored in registers. It is necessary to move the data from
memory to registers (load it) and back to memory (store it) with separate instructions. The
instructions in the following example are not exactly SPARC instructions, but they give you the

idea of load-store architectures. Here, “x,” “y,” and “z” are the names of some memory
ocations and “r1,” “r2,” and “r re the names of registers.
locat and “rl,” “r2,” and “r3” are the na f t

load x,rl
load y,r2
add rl,r2,r3

store r3,z

The first instruction moves data from memory into register “r1.” The second instructions moves a
number into register “r2.” The third instruction adds the values in “r1” and “r2,” placing the
result into register “r3.” The final instructions moves data from register “r3” back to main
memory.

Each SPARC instruction either does a memory access or does a computation. The idea is that each
instruction will be executed in one machine cycle. (Actually, in one machine cycle on average; due
to pipelining—i.e., instruction overlapping—the execution of each instruction will be spread over
several cycles.)

This architecture works best if all (or most all) the data can be kept in registers. Toward this end,

the SPARC provides a large number of registers. Accessing memory slows microprocessors down
and the goal is to minimize memory accessing by keeping all relevant data in registers.

Integer Registers

Each running process may access 32 “integer” registers. (“Floating-point” register are discussed
later.) Each integer register contains one word (32 bits) of data. Actually, each integer register has

Date Printed: April 5, 2006 Page 5

64 bits in a newer version of the architecture, but this is completely hidden for backward
compatibility. Thus, you can safely imagine that the registers are simply 4 bytes (32 bits) long.

The registers are divided into 4 groups of 8 registers each. Registers are given names that begin
with a % sign. Here are the names of the registers. Note the similarity of the numbers and letters 1
and 1, and of 0 and o.

Global Registers: $g0, %gl, ... %g7

Local Registers: %10, %11, ... %17
In Registers: %i0, %il, ... %i7
Out Registers: %00, %ol, ... %07

Any instruction that uses an integer register can use any one of the registers. However, some
registers have special uses. For example, the “in” and “out” registers are used for passing
arguments to/from subroutines. The “local” registers are generally used for data local to a
subroutine, while the “global” registers are used for data shared by several subroutines.

When doubleword (64 bit) data is manipulated, a pair of registers is used. In the instruction, the
programmer specifies the lower numbered register of the pair; the instruction will then operate on
that register and the register with the next higher number. The register pair must be aligned in the
sense that the lower numbered register should be an even numbered register. For example,
specifying %g2 would be legal and would indicate the register pair %g2 and %g3. The most
significant word will be in %g2 and the least significant word will be in %g3. Specifying %g3
would be in error for an instruction operating on doubleword data.

Register % g0

Register %g0 is special. Its value is always zero. Any attempt to read from this register will result
in zero being returned. Any attempt to store data into this register is perfectly legal; the data will
simply be discarded.

The Register File and Register Windows

The SPARC processor has a large set of 32-bit integer registers. While a routine is executing, it
has access to only 32 registers (the “in”, “out,” “local,” and “global” sets of 8 registers each)
although there are many more registers on the processor.

The set of registers that can be accessed at any moment is called the current “register window.”
You can imagine the registers as being organized in a long, linear list and the window being 24
registers big. This window slides up and down along this list, but at any time, only 24 registers
may be seen through it. The 24 registers visible through the window are the “in,” “local,” and
“out” registers (3 sets of 8 registers each).

The “global” registers do not participate in the window mechanism. There are simply 8 “global”
registers, and any one of them (such as “%g3) may be accessed from anywhere at any time.
However, a reference to an “in,” “local,” or “out” register (such as “%i3”) is context dependent.
It may refer to one register in one routine and a different register in another routine as discussed
next.

When a new routine is called, it is given its own set new set of “out” and “local” registers. These
are allocated from the above-mentioned file of registers. (More accurately, the window is moved,

Date Printed: April 5, 2006 Page 6

making a new set of registers visible. Thus, each routine invocation can be thought of as allocating
or creating 16 new registers. When the routine returns, these 16 registers disappear. They don’t
really go away, they just become inaccessible once more.)

Specifically, the “save” instruction (which is normally the first instruction in any routine and is not
used anywhere else) causes the 16 new “out” and “local” registers to be created. The “restore”
instruction (which is the last instruction in any routine) causes the registers to go away.

During a routine, any reference to a “local” or “out” register will refer to one of the 16 registers
that have been most recently created for the currently executing routine. Also, any reference to an
“in” register (in a called routine) will refer to a register that was previously referred to (in the
caller routine) as an “out” register. Within the called routine it is impossible to access the “in”
and “local” registers of the caller routine.

This mechanism should be used as follows:

* The caller places data to be passed to the called routine in its “out” registers.

¢ The new routine (call it “foo”) is invoked. The foo routine executes a “save” instruction,
thereby moving the register window.

* The foo routine gets its arguments from the same registers, which are now called the “in’
registers.

* The foo routine may use its “local” registers for computation, resting assured that any
routines it calls can not modify them.

* If foo wishes to call any routines, it will use its “out” register to pass arguments to those
routines. It will also use its “out” registers to receive results returned from those routines.

* The foo routine may use its “in” registers for computation, resting assured that any routines
it calls can not modify them. However, foo’s caller may have certain expectations about what
foo will leave in these registers after foo returns. In general, foo will use the “in” registers
freely, trashing them all with the exception of the “in” register(s) used to return results to its
caller.

* The foo routine may use its “out” registers for computations, but must remember that any
calls foo makes will allow some other routine access to these register. In general, foo should
assume that any call it makes may change any and all of its “out” registers. Therefore, it is
a good idea to use the “out” registers just for communication with routines foo will call.

* The foo routine places its results, if any, in the “in” registers.

 Finally, the foo routine executes a “restore” instruction and returns. This gets rid of foo’s
register window and restores the caller’s window.

* The caller can be sure that foo did not alter its “local” and “in” registers. The caller will
look for foo’s results in what that caller refers to as the “out” registers.

b

This clever register-window mechanism makes it possible to call and return from routines without
ever touching main memory, thereby potentially speeding up subroutine invocation dramatically.
As long as there are 6 or fewer arguments passed to a routine, and 6 or fewer results returned from
a routine, and as long as each routine can get by with 8 or few local variables, main memory need
not ever be accessed.

The global registers do not participate in the register windows and are intended to be used to store
static, globally-accessible variables that are shared across routine calls.

Date Printed: April 5, 2006 Page 7

Connection Between Register Window and Frame Stack in Memory

Register “%o06” 1is also called “%sp” and either name may be used in a program. Likewise,
“%16” 1s also called “%fp” and either can be used. It is possible that the above limits on
parameters and local storage are inadequate and that a traditional “activation record” (also called a
“stack frame”) will be allocated in main memory.

During the execution of routines, a stack of frames in main memory will be maintained. Each frame
in the stack may have a different size (however, the frames must always be a multiple of 8 bytes, i.e.,
doubleword aligned). The stack of frames in main memory should not be confused with the
“stack” of registers on the SPARC chip, and a stack frame should not be confused with a register
window, although the two mechanisms a related and used for similar purposes (namely, to provide
each routine with space for local variables).

During the execution of any routine, the “%sp” register will point to the top of the stack of frames.
This stack generally grows downward (toward low memory), so “%sp” points to the first word in
the current frame. Also, the “%fp” register points to the previous frame, i.e., to the first word of
the frame of the routine that called the current routine. The routine may use either register to access
fields in the frames on the stack. Typically, you might use [%sp+42] to address a field at offset 42
in the current (top) frame. You would use [%fp+56] to access something in the frame under the
top frame.

A new frame may be allocated on the stack by using the “save” instruction, which conveniently
subtracts a value from the old value of the stack top pointer (actually, “save” adds a negative
number), saving the result in the new stack top pointer. This is done at the same time a new register
window is opened up.

When a “restore” instruction is executed at the end of a routine, the “%sp” pointer is discarded
(since it is lost when the register window is moved) and the old top pointer (previously in “%i6” =
“%fp”) becomes the new stack top, as the register window is moved. When the window is moved,
this register once again becomes accessible as “%06” = “%sp” thereby making it the curent stack
top pointer.

Saving the Return Pointer

To facilitate quick subroutine calling and return, the registers “%i7” and “%o07” are dedicated to
saving the return address. They are manipulated by the “call” and “ret” instructions and are
generally not manipulated by other instructions.

Floating-Point Registers

The SPARC can operate on three sizes of floating-point number:

single precision: 1 word (32 bits)
double precision: 2 word (64 bits)
quad precision: 4 word (128 bits)

There are separate instructions to operate on the floating-point registers. For example, there is an
add instruction (called “add”) to add the contents of two integer registers, using the rules for
integer addition. There is also a floating-point add instruction (called “fadd”) which adds two
floating-point values from the floating-point register set, using the rules for floating-point addition.

Date Printed: April 5, 2006 Page 8

There are also instructions to move data to/from the floating-point registers and to perform
conversions from two's complement signed number representation to floating-point representation.

There are 32 floating-point registers of 32 bits each. Each can hold one single precision value.
Floating-point Registers %£0, %£f1, ... %£31

To manipulate double precision values, you specify an even numbered register (n); the instruction
will then act on the pair of registers (n and n+1). This allows for 16 double precision values to be
stored.

To manipulate quad precision values, you specify a register divisible by 4 (n); the instruction will
then act on the four registers (n, n+1, n+2, n+3). This allows for 8 quad precision values to be
stored.

Note the way the floating-point registers are numbered. Registers %f4, %f5, %f6, %f7 can hold
either four single precision values, or two double precision values (addressed as %f4 and %f6), or a
single quad precision value (addressed as %f4).

Single Precision Registers: $f0, %fl1, %f2, %f3, %f4, %f5, %fe6, %f7, %£f8, ...
Double Precision Registers: $£0, 3f2, 3f4, 3f6 $f8, ...
Quad Precision Registers: $fo0, $f4, $£8,

In addition to the 32 single precision registers mentioned above, there is an equal amount of register
storage that can be used only for double and quad precision values (but not for single precision
values). This allows for a total of 32 double precision values or 16 quad precision values to be
stored. The numbering of these additional registers follows the pattern established by the lower
numbered registers. To complete the chart given above:

Single Precision Registers: ¢f0, %f1, %f2, %£f3, %f4, %£f5, %f6, %f7, %£f8, ... %f31
Double Precision Registers: $£0, 2f2, 2f4, 2f6 %f8, ... %f62
Quad Precision Registers: $fo0, 3f4, $f8, ... %f60

Integer Condition Code Register

There is a 4 bit register (called “CC” or “CCR”) which contains the following bits. These bits
are set after certain instructions are executed to reflect the properties of the result of the operation:

Z. (zero bit) I=result is zero
O=not zero

N (negative) I=result is negative
O=not negative

V (overflow) I=operation resulted in overflow
O=no overflow

C (carry) I=operation resulted in a carry out
0=no carry

These bits are tested with the various integer branch instructions, which will conditionally branch
according to how these bits are set.

Date Printed: April 5, 2006 Page 9

Floating-point Condition Code Register

There is a 4 bit register (called “FCC”) which contains the following bits. These bits are set after
the floating-point compare instruction to reflect the relationship between the two operands:

E (equal bit) 1: opl=op2
0: otherwise
L (less) 1: opl<op2
0: otherwise
G (greater) 1: opl>op2
0: otherwise
U (unordered) 1: opl and op2 are unordered
0: otherwise

These bits are tested with the various floating-point branch instructions, which will conditionally
branch according to how these bits are set.

The Y Register

There is a 32-bit register called the “Y” register, which is used in the multiply and divide
instructions. These instructions each require one operand to be 64 bits long. This register provides
the upper (most significant) 32-bits and is loaded and read with the “wr” and “rd” instructions.

The Program Counter (PC) Register

There is a 32-bit register called the “PC”, which contains the address of the next instruction to
execute. It is modified with instructions that branch or transfer the flow of control.

13-Bit Sign-Extended Immediate Values

Many of the instructions allow for an immediate (or “literal”) value to be included directly in the
instruction. The subtract instruction, for example:

sub %12,27,%16

This instruction subtracts 27 from the value stored in register %12 and stores the result in %16. The
data (27) is specified immediately; it is not stored in a register. Instructions such as these allocate a
13 bit field in the instruction to contain the value. When executed, the 13 bits are interpreted as a
signed integer. The 13 bit value is “sign-extended.” In other words, the most significant bit (bit
12) is duplicated to fill the value out to 32 bits. This means that any value between -4096 and 4095
can be specified literally. If you wish to subtract a larger number, you can not use a literal value;
you will have to place it in a register of its own. (You can use the “set” instruction to accomplish
this.)

Date Printed: April 5, 2006 Page 10

Addressing Memory

In order to fetch or store data to / from memory, the address must first be placed in a register. The
“set” instruction is ideal for moving the address into a register. For example, the following code
first moves the address of “myVar” into register %l1. Then it uses that register to fetch from
memory. This code increments the word whose address is “myVar”.

set myVar, %11 ! Move address of myVar into %11

1d [$11],%12 ! Move data from myVar into %12

add %12,1,%12 ! Increment %12

st $12,[%11] ! Store data back, using same address

A second addressing mode allows an integer offset to be added to a register to compute the effective
address. For example, assume “myArr” is the address of the first element of an array of words.
We wish to increment the sixth element of this array. We will need an offset of 24, since each
element is 4 bytes long.

set myArr, %11
1d [$11+24],%12
add %1l2,1,%12
st $12,[%11+24]

A third addressing mode allows us to add the contents of two registers together to compute the
effective address. For example, if the offset into the array has been computed and placed in register
%13, then we can use the following code to access the desired element.

set myArr, %11
1d [$11+%13],%12
add %1l2,1,%12
st $12,[%11+%13]

A common thing to do is to access fields in the activation record (or “frame”). Assume that
variable x is a local variable stored at offset -8 in the frame. Then the following code would be used
to increment x. (In the following, “%fp” is shorthand for referring to one of the integer registers.)

1d [$fp-8],%12
add $12,1,%12
st %12, [%fp-8]

There are several “synthetic instructions.” Technically, these are not valid SPARC instructions.
Instead, they are introduced to make life easier for the programmer. Whenever the assembler sees a
“synthetic” instruction, it will translate it into one or two legal SPARC instructions and will use
those instructions instead.

For example, “set” is a synthetic instruction. It will be expanded into two instructions. Consider
the following code:

set myArr, %11
1d [311],%12

The “set” instruction will be expanded into two instructions, giving:

sethi $hi(myArr), %11

Date Printed: April 5, 2006 Page 11

or %11,%lo(myArr), %11
1d [$11],%12

The “sethi” and “or” instructions are discussed later, but in short, “sethi” moves 22 bits of data
into the register, and the “or” instructions brings in the remaining 10 bits of data. The “%hi” and
“%lo” functions are macros that isolate the relevant bits from the actual value provided, namely an
address in memory called “myArr.”

A more efficient code sequence would be:

sethi ¢hi(myArr),%sll

1d [811+%1lo(myArr)],%12
Assembler Comments

The exclamation point (!) is used to begin comments. The comment runs through the end-of-line.
I feel that every line of assembler code should be commented.

When a single comment applies to several instructions, I prefer to use a period as shown below to
indicate that a multi-line comment applies to several instructions. For example:

set myVal, %1l Increment myVal

|
1d [$11],%12 ! . by one
add $12,1,%12 !
st %12, [%11] !,
cmp %12,47 ! If myVal >= 47
bge loop ! . then goto loop
nop ! .

Labels and White Space

Each instruction may be preceded by an optional label. This label may then be the target of a
“branch” or “call” instruction. Data locations in memory may also be labeled, in which case the
label could be used in “load” or “store” instructions.

If a label is present, it should be at the beginning of the line and should be followed by a colon.
The instruction op-code is separated from the label by some white-space (usually a single tab
character). The instruction op-code is followed by white space (usually a tab or two) and the
operands. These can optionally be followed by some white space and a comment. Comments
consist of an exclamation mark through end-of-line.

A label may also appear on a line by itself, in which case it applies to the current location counter,
and thus will therefore be set to the address of the next instruction (notwithstanding things like
“.align” pseudo-ops that may change the location counter). Op-codes (both legal SPARC
instructions and pseudo-ops) must be preceded by white space, typically a tab or two.

Date Printed: April 5, 2006 Page 12

The convention is to try to make things line up neatly. For example:

myLoop: ! myLoop:
set myVal, %11l ! Increment myVal
1d [$11],%12 ! . by one
add %12,1,%12 .
st %12,[%11] .
cmp $12,47 ! If myVal >= 47
bge myLoop ! . +then goto myLoop
nop '
myVal: .word 0 ! myVal: counter of things

The Program Counter

Every computer processor contains a register called the Program Counter (or “PC”) which
contains the address of the next instruction to be executed. In the simplest model of computer
operation, the processor repeatedly executes this algorithm:

pc := 0;
loop
fetch next instruction from memory[pc];
pc := pc + 1;
execute the instruction:
Decode the instruction
Fetch operands from memory or registers
Perform computation
Store results back to memory or registers
endLoop

Sometimes the instruction will modify the flow of control (a “call” or “branch” instruction). For
such instructions, results will be stored into the PC register, causing the next instruction to be
fetched from a new address.

In this simple model, each instruction executes to completion before the next instruction begins.

The Delay Slot and Annulled Instructions

In reality, the SPARC architecture is pipelined, which means that the execution of the previous
instruction is overlapped with the execution of the next instruction. For the most part, this is
transparent. If one instruction writes to a register and the next instruction reads from that same
register, the computer will automatically delay as necessary to give the same result as if there were
no pipelining.

However, for branch and call instructions (and any instruction which alters the flow of control), the
pipelining will be visible to the programmer. The SPARC is always pre-fetching the next
instruction and decoding it while finishing the execution of the previous instruction. The pre-fetch
and decode doesn't cause any problems except when a control flow transfer is made.

When a transfer is made, the next instruction (the one after the branch) is so far along that it cannot
be reasonably stopped. Therefore, the instruction immediately after the branch is always executed,

Date Printed: April 5, 2006 Page 13

regardless of whether the branch is taken or not. This instruction is called the delay instruction and
the position directly after a branch or call instruction is called the “delay slot.”

One option is to put a “nop” instruction in the delay slot. The “nop” instruction (pronounced
KNOW-OP) simply does nothing. This solution is simple but wastes a machine cycle. This is
what we did in the example above in the section titled “Assembler Comments.”

Another option is to move a real instruction into the delay slot. The instruction will then be
executed after the branch instruction but before the target instruction. You may either select an
instruction that was previously located somewhere before the branch instruction and move it down
into the delay slot, or you may take the instruction that was previously the target of the branch
instruction and copy (not move) it into the delay slot. In the second case, you would alter the
branch instruction to jump to the instruction following the previous target instruction.

In the first case, when you select an instruction before the branch to move down into the delay slot,
you must ensure that the results of the moved instruction are not needed before the branch is taken.
For example, in the following sequence:

cmp $13,17
ble loop
<delay slot>

we cannot move the compare instruction since it sets the condition codes, which are needed by the
branch instruction.

In the second case, when you move the instruction at the target of the branch, you must keep in
mind that the branch may not always be taken, but that the delay slot will always be executed.

Consider the following code:

loop: add %$15,1,%15
cmp $13,17
ble loop
<delay slot>

First, we will copy the target instruction (which increments register %I15) into the delay slot and alter
the branch instruction to jump to the instruction following the add:

add $15,1,%15
loop: ...

cmp $13,17

ble loop

add $15,1,%15

Unfortunately this code is incorrect: the add instruction will be executed an extra time, when the
branch is not taken. To facilitate code like this, branch instructions allow the programmer to
“annul” the delay slot. A single bit in the branch instruction tells whether the delay slot is
annulled. If branch instruction has annulling turned on, and if the branch is not taken, the
instruction in the delay slot will not be executed. The processor will do whatever is necessary to
avoid executing the instruction, or will undo any of the effects of partially executing the delay
instruction.

Date Printed: April 5, 2006 Page 14

To turn on annulling, the programmer uses the following syntax. Here is the correct version:

add $15,1,%15
loop: ...

cmp $13,17

ble,a loop

add $15,1,%15

Although annulling will slow the execution down when the branch is not taken, it will have no effect
on execution when the branch is taken. This architecture is designed to speed up repetitive looping
constructs, where many programs will spend most of their time. In a typical loop, the branch is
taken many times (once for each iteration), but only not taken once (when the loop terminates).

The Location Counter

As the assembler scans and processes each line of code, it keeps track of the current memory
location into which each instruction will be placed. To do this, the assembler keeps a variable called
the “Location Counter,” which should not be confused with the “Program Counter.”

When an instruction is encountered, the location counter is advanced by 4 (i.e., by the size of the
instruction, 4 bytes). When a branch instruction is processed, the location counter is always
advanced by 4 and the instruction on the line following the branch is then processed.

It is important to understand that the location counter is an assembly-time concept; it does not exist
at run time. On the other hand, the program counter is a run-time register and is only active when
the program is running. When the assembler encounters a branch instruction, it never “takes” the
branch; instead it simply moves on to the next instruction in the source file.

When the assembler encounters a label, it adds a new definition to its symbol table, using the
current value of the location counter as the definition of the symbol. When the assembler
encounters a branch instruction or a load or store instruction using some label, it looks that label up
in the symbol table. It will use the value of that symbol in generating the instruction.

Assemblers generally make two passes over the source program. In the first pass, the location
counter is set to zero, and the source code file is scanned line-by-line. Each time an instruction is
encountered, the location counter is advanced by the length of the instruction, but no code is
generated in the first pass. Whenever a label is encountered, it is entered into the symbol table,
using the current value of the location counter as the symbol definition. In the second pass, the
source code is again examined line-by-line from beginning to end. This time, machine code is
generated and written to the output as each instruction is scanned.

This two-pass approach allows branches and other instructions to use labels that are defined either
before or after the instruction. As the second pass begins, all symbols are already defined. As the
second pass proceeds, the machine code for each instruction can be determined by plugging in the
symbols' values as necessary.

Actually, the assembler can be used to place data and instructions into several segments. The
assembler maintains a location counter for each segment. Thus, there is a “.data” location counter,
a “.text” location counter, and a “.bss” location counter. At any one time, the assembler is “in”
only one segment, as determined by the .data, .text, and .bss pseudo-ops (assembler
directives). For example, if the last pseudo-op was .text, all generated data following it will be
placed in the “.text” segment and the corresponding location counter will be incremented.

Date Printed: April 5, 2006 Page 15

Branch and call instructions in the SPARC architecture are relative, and not absolute. For example,
the branch instructions contain a 22 bit field to specify the target address for the branch. This 22
bit field does not contain the absolute address of the target instruction. Instead, this field is
interpreted as a signed number and is added to the current program counter (at run-time) to give the
target address. The benefit of using relative addresses is that the code can be “relocated,” i.e.,
moved into any address of memory without having to be modified.

Consider the following code:

loop: add %15,5,%15
add $13,1,%13
cmp $13,17
ble loop
<delay slot>

The branch instruction will contain a displacement of -12, meaning that the target instruction is 12
bytes before the branch instruction. At runtime, this code may be loaded at any address. For
example, it might be loaded at addresses starting at 0x65432100:

6543 2100 loop: add %15,5,%15

6543 2104 add %13,1,%13
6543 2108 cmp %13,17
6543 210C ble loop
6543 2110 <delay slot>

When the processor executes the branch instruction, it takes the current value of the program
counter (6543210C) and adds the relative offset in the instruction (i.e., -12), giving the address of
the instruction labeled “loop.” Obviously, if this code had been loaded at some other address at
run-time, it would still work correctly.

To be precise, the 22 bit displacement is signed extended to 32 bits, and then multiplied by 4 (since
all instructions must be word aligned). Finally, this value is added to the address of the branch
instruction. This means that the target of a branch instruction must lie within -16,777,216 to
16,777,215 bytes of the branch instruction.

Floating-Point Number Representations

A “single precision” floating-point number is represented as:

31 30 23 22 0
[! |

S exp fraction

The sign bit is O=positive, 1=negative. The exponent is an 8 bit value with an interpretation
described below. The fraction is a 23 bit field.

The range of numbers representable with single precision floating-point is:
Smallest Number: 1.17549435 x 10-38

Largest Number: 3.40282347 x 10+38
Number of digits of accuracy: about 9

Date Printed: April 5, 2006 Page 16

The exp field can be interpreted as an unsigned integer between 0 and 255. If the exp field is
between 1 and 254, this floating-point number is representing the number N:

N = (-1)$ x 1.fraction x 2¢xp-127
If the exponent is 255 (i.e., all 1's), it signals a special case. Examples with (exp = all ones) are:
0x7FF00000 = +o°
0xFFF00000 = -
OxFFFFFFFF = NaN (i.e., “Not a Number™)

If the exponent is all zeros, it signals a “subnormal” number. These are tiny numbers, close to
zero. They are represented slightly differently than shown in the formula above.

A “double precision” floating-point number is represented with two words (8 bytes):

31 30 20 19 0
[! |
S exp fraction
31 0
I |
fraction

The exponent is 11 bits and the fraction is 52 bits.

The exp field can be interpreted as an unsigned integer between 0 and 2047. The number
represented is:

N = (-1)8 x 1.fraction x 2¢xp-1023

The range of numbers representable with double precision floating-point is:
Smallest Number: 2.2250738585072014 x 10-308

Largest Number: 1.7976931348623157 x 10+308
Precision: about 17 decimal digits of accuracy

Date Printed: April 5, 2006 Page 17

A “quad precision” floating-point number is represented with four words (16 bytes):

31 30 16 15 0
L | |
S exp fraction

31 0

| |
fraction

31 0

| |
fraction

31 0

| |
fraction

The exponent is 15 bits and the fraction is 112 bits.

The exp field can be interpreted as an unsigned integer between O and 32,768. The number
represented is:

N = (-1)8 x 1.fraction x 2€Xp-16,383

Pseudo-Ops (Assembler Directives)

The following sections describe several “pseudo-operations,” which control and direct the
assembler in its task. Pseudo-ops are sometimes called “assembler directives.”

Pseudo-ops are included in the assembly language program file, mixed in among the real SPARC
instructions. However, pseudo-ops are not executed at runtime; instead they tell the assembler how
to assemble other instructions and what the put into memory before program execution begins. For
example, a pseudo-op could be used to initialize a variable with some particular value. The value
can be coded using convenient (C-like) notation, freeing the programmer from having to specify the
precise bit-pattern used to represent the value.

Pseudo-ops begin with a period to make it easy to distinguish them from SPARC instructions.

Character Data

Here are examples of the “.ascii” and “.asciz” pseudo-ops:

.ascii "abc"
.asciz "SPARC programming is fun!\n"

The “.ascii” and “.asciz” pseudo-ops place N bytes of data in memory, where N is the number of
bytes in the character string. In the case of .asciz, an additional byte of zero is placed after the last
character (the “C” string convention), resulting in N+1 bytes. The standard “C” string escapes
(such as ‘“\n”) can be used.

Date Printed: April 5, 2006 Page 18

Data

.byte expression
.half expression
.word expression
.double expression

These pseudo-ops place data values in memory. In each case, arbitrary expressions may be
provided, as long as they can be fully evaluated at assembly-time. These expressions may include
many of the operators (such as + and *) available in the C language.

Also, lists of data values may be provided, in which case several byte (or half or word or double)
values are placed in memory. For example:

.word 10,20,30

would initialize three consecutive words of memory.

Alignment

The “.align” pseudo-op will force the location counter to be aligned according to the argument
(which should be 2, 4, or 8). In other words, one or more bytes of padding may be inserted to
round the location counter up to an address divisible by 2, 4, or 8.

.align 2
.align 4
.align 8
In the first line of the following example, up to 3 bytes will be inserted (if necessary) to bring the

location counter up to a multiple of 4. In the second line, 5 word-sized values will be allocated.
These will be followed by a padding word (if necessary), followed by 2 double word constants.

.align 4

.word 43,"cs30",-1,0x0123,0
.align 8

.double 12.34,-123.456el2

It never hurts to place an .align pseudo-op directly before instructions that require a particular
alignment, and it is necessary if the preceding instructions may have left the alignment wrong.

The .half, .word, and .double instructions require proper alignment. In this example, the second
.align instruction is necessary. (Consider the case when the location counter is initially set to
doubleword alignment, i.e., divisible by 8. The .word pseudo-op will allocate 5 words—20
bytes—and will leave the location counter not divisible by 8.)

Date Printed: April 5, 2006 Page 19

Uninitialized Data Space
.skip n

This pseudo-op skips over N bytes, where N is any expression.

Segment Control

A running process is loaded into main memory before execution begins. In Unix, a running
process is divided into four “segments.” These segments have the following names:

.data

.text

.bss

.stack
The assembler is used to determine which bytes will initially be loaded into the “data,” “text,” and
“bss” segments. For example, the “data” segment might be 100 bytes long, the “text” segment
might be 13,000 bytes long, and the “bss” segment might be 0 bytes long. After loading, the bytes
in the “data” segment will be marked read/write, and the bytes in the “text” segment will be
marked “read-only.” Any attempt at run-time to modify a byte in the “text” segment will result in
a “segment fault.” Any attempt to access a byte outside of any segment will also result in a
“segment fault.” The “stack” segment will be marked read/write, and has no fixed size; instead
any attempt to access bytes beyond the end of the “stack” segment will result in new pages being
added to that segment.

There are three pseudo-ops that allow control over which segment to place data and instructions
into. They are:

.data
.text
.bss

These pseudo-ops determine into which segment the following instructions and/or data will be
placed. Each “remains in effect” until a new .data or .text or .bss pseudo-op is
encountered.

At assembly time, each of the three segments is assumed to start at location zero. Later, when the
program is loaded into main memory, an address will be selected. Also, the size of the segment is
rounded up to the nearest page boundary. In a machine with 8K byte pages, our “data” segment
with 100 bytes would be rounded up to 8K bytes. The “text” segment, with 13,000 bytes would
be rounded up to 16K bytes. Then an address is selected for each of the four segments and the
initial data is loaded into the appropriate memory locations.

Symbols

Symbols may be defined in several ways. The most common way is when an instruction is labeled.
Another way is when the location of data in memory is allocated (e.g., with a “.word” pseudo-op)
and a label is present.

Date Printed: April 5, 2006 Page 20

When the assembler encounters a label, it makes a new entry in its symbol table, associating the
symbol with the current value of the location counter. It also makes a note in its symbol table of
which segment this address is in. Later, when the program is linked, the segment will be assigned a
specific address. This will require that the value of the symbol be adjusted. Furthermore, every
instruction that uses the symbol must be modified to reflect the fact that the symbol is being
adjusted. Obviously, there is a lot of information in the “.0” files that indicates which symbols are
used as well as where and how they are used, so that the linker can make these adjustments when
the various segments are put together.

Symbols may also be defined directly using the “=" pseudo-op. Here is an example:
set myVal, %11l ! Increment myVal
1d [$11],%12 ! by “incrAmt”
add %$12,incrAmt, %12 !
st $12,[%11] !

incrAmt = 3

Note that “=""is a pseudo-op just like “.align” or “.text”, although “=" differs in that it is
not given an alphabetic name beginning with a period.

In this example, we have introduced a symbol called “incrAmt” and set its value to 3. Such a
symbol is an assemble-time constant: it can never change. This symbol is absolute, which means it
is not relative to any segment. During linking, when the segments are assigned addresses, no
adjustment will be needed to the “add” instruction. The value of 3 will be used. The symbol
“incrAmt” may be used any place the constant 3 may be used.

In this example, the operand of the “=" pseudo-op is “3.” In general, the operand can be any
expression, as long as it can be evaluated at assemble-time.

External Symbols

.global anySymbol

The “.global” pseudo-op tells the assembler to include information in the “.0” file to identify the
named symbol and give information about its location. It is assumed that “anySymbol” is
defined as an address within this module. This pseudo-op will make it visible to other “.0” files
with which this module is linked. Consider this example:

.global main

.align 4
main: save .o
call printf

If a symbol (such as “printf” in this example) is not defined in this module, the linker will look for
a definition of it in other “.0” modules and will patch up the instructions in this module to point to
it.

It is a good idea to put an “.align” pseudo-op before the first instruction, in case previous data left
us on a non-word alignment boundary.

Date Printed: April 5, 2006 Page 21

Note that the following is in error since the symbol “main” would be set to point to the “padding”
bytes inserted by the “.align”.

main:

.align 4
save .

SPARC Instruction Set

The next sections describe the instructions available on the SPARC architecture. Not all SPARC
instructions are discussed here, but there should be enough instructions to allow you to create a
large range of programs.

Each section describes one, or several related, instructions. In the discussion, we use a number of
abbreviations:

regl

reg2

reg2_or_ immed
regs

regd

freg

address

The terms “regl,” “reg2,” “regs,” “regd” stand for any integer registers. The term “regs”
stands for a source register, that is, a register that supplies the data. The term “regd” stands for a
destination register, i.e., a register into which a result will be moved. The term “freg” stands for a
floating-point register. The term “reg2_or_immed” means that the programmer may supply either
an integer register or may supply a literal (immediate) value. The immediate value must be given by
an expression that can be evaluated at assembly time. The expression may contain symbolic names,
but must contain a value computed at run-time or a value stored in memory.

For example, one of the formats for the “add” instruction is:
add regl,reg2 or immed,regd

Here are some valid examples of this instruction format:

add %$g92,%1i3,%93
add %02,1,%02
add %16, (numWords*17) >> 2, %15

The term “address” can take three different forms:
[regl+reg2]
[regl+offset]

[regl]

In the first case, the contents of register regl and the contents of register reg2 are added together to
give the memory address. In the second case, the 13-bit sign-extended immediate offset is added to

Date Printed: April 5, 2006 Page 22

the contents of register regl to give the memory address. In the third case, the contents of register
regl alone provide the memory address.

The registers in an address are always non-floating-point registers.
For example, one of the formats for the “load” instruction is:
1d address, regd

Here are some valid examples of this instruction format:

1d [%92],%93

1d [$12+%13],%03

1d [$14+8],%12

1d [$i4+ (numWords*4)],%1i2

In the following sections, the bold heading is a descriptive name for an instruction or group of
instructions. There may be several closely related instructions and these will be grouped under a
single heading. For example, under the heading “add,” there are two instructions, whose op-codes
are “add” and “addcc”.

add
add regl,reg2 or immed,regd
addcc regl,reg2 or immed,regd

The contents of register reg2 or the immediate value is added to the contents of regl and the result
is placed in register regd. In the case of addcc, the condition codes are set according to the resulting
value. The immediate value is encoded as a sign-extended 13-bit value; therefore it must lie between
-4096 and 4095.

sub

sub regl,reg2 or immed,regd
subcc regl,reg2 or immed,regd

The contents of register reg2 or the immediate value is subtracted from the contents of regl and the
result is placed in register regd. In the case of subcc, the condition codes are set according to the
resulting value. The immediate value is encoded as a sign-extended 13-bit value; therefore it must
lie between -4096 and 4095.

Multiplication

smul regl,reg2 or immed,regd
smulcc regl,reg2 or immed,regd

This instruction takes two 32-bit arguments and produces a 64-bit result. The contents of register
reg2 or the immediate value is multiplied by the contents of regl. The least-significant 32 bits of
the result are placed in register regd. The most significant 32 bits are placed in the “Y” register.
(Refer to the “WR” and “RD” instructions for manipulating the “Y” register.)

Date Printed: April 5, 2006 Page 23

If present, the immediate value is encoded as a sign-extended 13-bit value; therefore it must lie
between -4096 and 4095.

All values are treated as signed quantities. There are also similar instructions to perform unsigned
multiplication:

umul regl,reg2 or immed,regd
umulcc regl,reg2 or_ immed,regd

In the case of “smulcc” and “umulcce,” the condition codes are set according to the result. Note
that they are set according 32-bits left in regd, not the full 64-bit result.

Division

sdiv regl,reg2 or immed,regd
sdivcc regl,reg2 or immed,regd

This instruction divides a 64-bit number by a 32-bit number, producing a 32-bit result. The 64-bit
number is constructed by using the “Y” register as the most-significant word and regl as the least
significant word. This is divided by the contents of register reg2 or the immediate value. The 32-
bit result is placed in register regd. (Refer to the “WR” and “RD” instructions for manipulating
the “Y” register.)

If present, the immediate value is encoded as a sign-extended 13-bit value; therefore it must lie
between -4096 and 4095.

All values are treated as signed quantities. There are also similar instructions to perform unsigned
division:

udiv regl,reg2 or immed,regd
udivcc regl,reg2 or immed,regd

In the case of “sdivce” and “udivcee,” the condition codes are set according to the result.

and

and regl,reg2 or immed,regd
andcc regl,reg2 or immed,regd

The contents of register reg2 or the 13-bit immediate value is logically ANDed with the contents of

regl and the result is placed in register regd. In the case of andcc, the condition codes are set
according to the resulting value. If a 13-bit immediate value is used, it is signed extended.

or regl,reg2 or immed,regd
orcc regl,reg2 or immed,regd

Date Printed: April 5, 2006 Page 24

The contents of register reg2 or the 13-bit immediate value is logically ORed with the contents of
regl and the result is placed in register regd. In the case of orcc, the condition codes are set
according to the resulting value. If a 13-bit immediate value is used, it is signed extended.

Xxor

xXor regl,reg2 or immed,regd
xorcc regl,reg2 or immed,regd

The contents of register reg2 or the 13-bit immediate value is exclusively-or'ed with the contents of

regl and the result is placed in register regd. In the case of xorcc, the condition codes are set
according to the resulting value. If a 13-bit immediate value is used, it is signed extended.

sll - Shift Left Logical

sll regl,reg2 or immed,regd
The contents of register reg1 is shifted left by N bits and the result is placed in regd. N is a number

from O through 31 and may be in register reg2 or may be specified literally. If N is zero, the data is
not shifted. Zeros will be shifted in from the right. The condition codes are not altered.

srl - Shift Right Logical

srl regl,reg2 or immed,regd

The contents of register regl is shifted right by N bits and the result is placed in regd. N is a
number from 0 through 31 and may be in register reg2 or may be specified literally. If N is zero,
the data is not shifted. Zeros will be shifted in from the left. The condition codes are not altered.

sra - Shift Right Arithmetic
sra regl,reg2 or immed,regd

The contents of register regl is shifted right by N bits and the result is placed in regd. N is a
number from O through 31 and may be in register reg2 or may be specified literally. If N is zero,
the data is not shifted. Vacated bits on the left will be filled with the previous sign bit. Thus, this

instruction serves as a division by 2N, with rounding toward minus infinity. The condition codes
are not altered.

ov
mov regl or immed,regd
The contents of register regl or the immediate value is moved into register regd. If used, the
immediate value is encoded as a sign-extended 13-bit value; therefore it must lie between -4096 and
4095. The condition codes are not altered.

This is a synthetic instruction; the assembler substitutes the following:

Date Printed: April 5, 2006 Page 25

or $g0,regl or immed,regd

Id - Load Word

1d address, regd
1d address, fregd

A 32-bit (4 byte) word is moved from the memory location given by address into register regd. The
destination register may be an integer register or a floating-point register. (Floating-point registers
are specified as %f0 through %f31).
The condition codes are not altered. The address must be word-aligned.
The address may by given as:

[regl+reg2]

[regl+offset]

[regl]
In the first case, the contents of register regl and the contents of register reg2 are added together to
give the memory address. In the second case, the 13-bit sign-extended immediate offset is added to
the contents of register regl to give the memory address. In the third case, the contents of register
regl alone provide the memory address.

The registers in an address are always non-floating-point registers.

1dd - Load DoubleWord

1dd address,regd
1dd address, fregd

A 64-bit (8 byte) doubleword is moved from the memory location given by address into registers
regd and regd+1. The destination register pair may be an integer register pair or a floating-point
register pair. Regd (or fregd) must be even. The first 4 bytes (the most significant bytes) are
moved into the even-numbered register.

The condition codes are not altered. The address must be doubleword-aligned.

st - Store Word into Memory

st reg,address
st freg,address

A 32-bit (4 byte) word is moved from register reg into the memory location given by address. The
data may be moved from an integer register or a floating-point register.

The condition codes are not altered. The address must be word-aligned.

Date Printed: April 5, 2006 Page 26

std - Store Doubleword into Memory

std reg,address
std freg,address

A 64-bit (8 byte) doubleword is moved from registers reg and reg+1 into the memory location
given by address. The source register may be an integer register pair or a floating-point register
pair. Reg (or freg) must be even. The contents of the even-numbered register is moved into the
first 4 bytes (the most significant bytes).

The condition codes are not altered. The address must be doubleword-aligned.

Read and Write “Y” Register

wr regs, 3%y

rd %y,regd
The “wr” instruction moves 32-bits from any integer register “regs” into the “Y” register. The
“rd” instruction moves 32-bits from the “Y” register into any integer register “regd.” There are
other forms of these instructions used to move data to/from registers that are not discussed in this
document.

The condition codes are not altered.

cmp - Compare

cmp regl,reg2 or_ immed
The contents of register regl is compared to register reg2 or to the immediate value and the
condition codes are set accordingly. If an immediate value is used, it is encoded as a sign-extended

13-bit value; therefore it must lie between -4096 and 4095.

This is a synthetic instruction. The assembler generates code as if the following instruction had
been supplied:

subcc regl,reg2 or_ immed, %g0

Date Printed: April 5, 2006 Page 27

Conditional Branching

The relevant instructions are:

be label
be,a label
bne label
bne, a label
bl label
bl,a label
ble label
ble,a label
bg label
bg,a label
bge label
bge,a 1label
bcc label
bcc, a label
bcs label
bcs,a label
bvc label
bvc,a label
bvs label

bvs,a label

These instructions test the current setting of the 4 condition code bits and the branch is taken if the
indicated condition holds. The conditions are defined as follows:

be equal

bne not equal

bl less than

ble less than or equal

bg greater than

bge greater than or equal
bcc carry bit clear

bcs carry bit set

bvc no overflow

bvs overflow

There are four condition code bits, which are set in various combination to give the conditions listed
above.

N l=negative
Z l=zero

C l=carry

A%

l=overflow

Due to pipelining, the instruction immediately following the branch instruction in memory (i.e., the
instruction in the “delay slot”) is normally executed before the target instruction is executed. If the
annul bit in the instruction is set (as indicated by “,a” in the instruction), the delay slot is only
executed if the branch is taken; if the branch is not taken, the delay instruction is annulled - that is, it
is not executed.

Date Printed: April 5, 2006 Page 28

The label is given as a 22-bit displacement. The 22-bits are shifted left two bits, sign-extended and
then added to the address of this instruction to give the address of the target instruction. In
assembly code, a symbolic label is normally provided.

Unconditional Branching

ba label
ba,a label

The branch is always taken. If the “,a” is provided, the instruction in the delay slot is not executed;

otherwise, it will be executed before the branch is taken. Note that this annulling behavior is
slightly different than for conditional branch instructions.

sethi

sethi immed 22,regd
This instruction takes a 22-bit value. It zeros the lo-order (least significant) 10-bits of the register
and moves the 22-bit value into the hi-order (most significant) bits. The condition codes are not
altered.

The built-in assembler macro functions %hi() and %Ilo() are defined as:

ghi(x) x >> 10
%lo(x) x & Ox3ff

The %hi() and %Ilo() functions may be used in any expressions in any instructions processed by

the assembler, just like operators +, *, etc. They will be evaluated during the assembly process, not
at run-time.

set
set immed value,regd

The “immed_value” may be any 32-bit quantity. This instruction moves the 32-bit immediate data
into register “regd.” The condition codes are not set.

This is a “synthetic instruction.” In general, the assembler will replace a “set” instructions with
the instructions:

sethi $hi(value),regd
or regd, %$lo(value),regd

If the hi bits are all zero, the assembler will simply substitute the following single instruction:
or %g0,value,regd
If the lo bits are all zero, the assembler will substitute the following instruction:

sethi $hi(value),regd

Date Printed: April 5, 2006 Page 29

Note that since the assembler may replace a “set” instruction with two instructions, you should not
use a “set” in the delay slot. The delay slot has room for only one instruction.

nop
nop

No operation is executed. This is a “synthetic instruction.” The assembler substitutes the
instruction:

sethi 0,%g0

call
call label

Control is transferred to the given instruction. The instruction in the delay slot immediately
following this instruction will be executed before control is transferred. The address is a 30-bit
relative offset from the location of this instruction. The address of the call instruction is stored into
%07 so it may be used for returning later.

This instruction is encoded using only 2 bits for the op-code and 30 bits for the target field. The
target field is multiplied by 4 (i.e., padded on the right with 2 zero bits), since the target instruction
must always be word-aligned. Thus, a call can be made to any instruction in the 4G byte (32-bit)
address space. The target field is relative; that is, it is added to the program counter to give an
absolute address.

call — (second form)

call address

Here, address may be:

[regl+reg2]

[regl+offset]

[regl]
In the first case, the contents of register regl and the contents of register reg2 are added together to
give the address of the routine. In the second case, the 13-bit sign-extended immediate offset is
added to the contents of register reg] to give the address. In the third case, the contents of register
regl alone provide the address.

This is a synthetic instruction. The assembler generates code for the following:

jmpl address, %07

Date Printed: April 5, 2006 Page 30

jmpl
jmpl address, regd

Control is transferred to the instruction at address. The instruction in the delay slot immediately
following this instruction will be executed before control is transferred.

The address may by given as:

[regl+reg2]

[regl+offset]

[regl]
In the first case, the contents of register regl and the contents of register reg2 are added together to
give the memory address. In the second case, the 13-bit sign-extended immediate offset is added to
the contents of register regl to give the memory address. In the third case, the contents of register
regl alone provide the memory address.

The address of this instruction is stored into regd.

ret - Return from Routine

ret
This instruction is used to return from a (non-leaf) routine. The instruction in the delay slot
immediately following this instruction will be executed before control is transferred. It is assumed
that this routine executed a “save” earlier, and that the delay slot will be filled by a “restore.”
Thus, the saved return address is in %i7, not %o07.
This is a synthetic instruction. The assembler generates code for the following.

jmpl $17+8,%90

The addition of 8 causes control to skip past the “call” instruction (4 bytes) and past the
instruction in the delay slot after the “call” instruction (4 bytes).

retl - Return from Leaf Routine

retl
This instruction is used to return from a (leaf) routine. The instruction in the delay slot immediately
following this instruction will be executed before control is transferred. It is assumed that this
routine did not execute a “save,” so the return address is in %o07.

This is a synthetic instruction. The assembler generates code for the following.

jmpl %07+8, %90

Date Printed: April 5, 2006 Page 31

save
save regl,reg or immed,regd

This instruction is normally executed as the first instruction of a non-leaf routine and creates a new
activation record (i.e., frame) on the calling stack.

This instruction creates a new register window: The previous “in” and “local” registers are saved.
A new set of “local” and “out” registers are allocated. The previous contents of the “out”
registers become available as the “in” registers.

The reg_or_immed will normally be a 13-bit sign-extended immediate value. It will be added to the
value of regl and the result will be stored in regd. Regl and the register of the second operand (if
any) come from the previous register window. Regd comes from the new register window.

The normal usage of this instruction is:
save %sp,-(64+4+24+args+locals)&-8, %sp

The 64 is the number of bytes in the activation record for saving the register window (16 registers).
The 4 is the number of bytes in the activation record for the structure pointer. The 24 is the number
of bytes for saving %i0 through %i15. Args is the number of bytes for additional arguments (to be
passed to routines called by the routine containing this save). Locals is the number of bytes
required for local and temporary variables in this routine. The &-8 is to assure that doubleword
alignment is followed.

After the save, the new stack top will be computed by adding this immediate value to the old stack
top and will be stored in %sp (=%06). The previous stack top will be left in %fp (=%16).

restore
restore regl,reg or immed,regd

This instruction is normally executed as the last instruction of a non-leaf routine by being placed in
the delay slot after a “ret” instruction.

This instruction restores the register window, which has the side-effect of popping the top activation
record from the stack. (Before this instruction, the current stack top is in %06 (=%sp). The old
stack top was saved in %i6 (=%fp). After the register window is shifted, the %i6 (=%fp) register
becomes %06 (=%sp), thereby shrinking the stack back to its older size.)

The returning routine's out and local registers are lost (freed). The calling routine's saved in and
local registers are restored. The in registers of the returning routine become (once again) the out
registers of the calling routine.
Normally, the arguments are omitted:

restore
If arguments are supplied, this instruction acts like an add instruction except that the source

registers come from the old register window and the destination register regd is from the new
register window.

Date Printed: April 5, 2006 Page 32

ta - Trap to the Operating System

The following instruction traps to the operating system.
ta immed

To invoke a kernel routine (i.e., to call an operating system function from user-mode code), use the
trap instruction. First place an integer in %g]1 indicating the service requested. There is no delay
slot following the trap instruction. The trap instruction takes an integer in the range 0..127. For
example:

mov
ta

6,%9l
0
The trap instruction changes the mode to “privileged” mode (aka: “supervisor” or “system”

mode) and jumps into the operating system's address space. There are a number of trap
instructions, based on the condition codes. “ta” stands for “trap always.”

Args to a kernel call are passed in %00, %001, %02, etc. The kernel may set the CARRY condition
code to indicate the results of the call:

C=0 OK
C=1 Problems

Some of the service requests are:

read
write
open
creat
close
exit (7)
exit (7)

— O 000NN B~ W

Moving Data Between Memory and Floating Registers

To move data into a floating-point register, use a load instruction and specify a floating-point
register as the destination. To move data out of a floating-point register, use a store instruction and
specify a floating-point register as the source.

1d [address], fregd
1dd [address], fregd
st fregs, [address]
std fregs, [address]

Here, [address] may be:
[regl+reg2]

[regl+offset]
[regl]

Date Printed: April 5, 2006 Page 33

For version 9, you may also move quad word quantities using the following instructions:

1dg [address],fregd
stq fregs, [address]

Moving Data Between Integer and Floating Registers

It is apparently impossible to move data directly (with one instruction) between an integer register
and a floating-point register. The data must first be moved into memory, and from there to the
register.

Clearing Floating Registers

To clear a floating-point register, it is necessary to load a value from memory. For example:

set myZero, %16
1d [316],%f4
myzZero: .single 0r0

It might be tempting to try subtracting a register from itself; however this fails if the floating-point
register contains NaN (“not-a-number”).

Floating-Point Instructions

In this section, we list several instructions that perform floating-point computations.

In the notation used here, “freg” stands for any floating-point register. Of course, the register
number must be aligned properly for double or quad precision operations. In the notation used

Date Printed: April 5, 2006 Page 34

here, “fregl” and “freg2” stand for the two source operands (for binary operations); “fregs”
stands for a single source register (for unary operations); and “fregd” stands for a destination
register (i.e., where the result is stored).

Most of the floating-point instructions end with a letter (either “s,” “d,” or “q”) to indicate
whether the operation is performed using single, double, or quad precision.

The following instructions perform floating-point addition, subtraction, multiplication, and division.

fadds freqgl, freg2, fregd
fsubs freqgl, freg2, fregd
fmuls freqgl, freg2, fregd
fdivs fregl,freg2,fregd

faddd freqgl, freg2, fregd
fsubd freqgl, freg2, fregd
fmuld freqgl, freg2, fregd
fdivd fregl,freg2, fregd

faddg freqgl, freg2, fregd
fsubg freqgl, freg2, fregd
fmulg freqgl, freg2, fregd
fdivg fregl,freg2, fregd

The following instructions move data from the source register to the destination register.

fmovs fregs, fregd
fmovd fregs, fregd
fmovqg fregs, fregd

The following instructions negate the value in the source register and place the result in the
destination register. (Note: since only the sign bit is affected, only “fnegs” is strictly necessary.)

fnegs fregs, fregd
fnegd fregs, fregd
fnegq fregs, fregd

The following instructions compute the absolute value of the value in the source register and place
the result in the destination register.

fabss fregs, fregd
fabsd fregs, fregd
fabsqg fregs, fregd

The following instructions compute the square root of the value in the source register and place the
result in the destination register.

fsqrts fregs,fregd

fsqrtd fregs,fregd
fsqrtqg fregs,fregd

Date Printed: April 5, 2006 Page 35

Floating-Point Comparison

The following instructions compare the value in the register] with the value in register 2.

fcmps fregl, freg2
fcmpd fregl, freg2
fcmpqg fregl, freg2

The floating-point condition codes are set as follows:
E issetto 1 iff argl =arg2
L issetto 1 iff argl <arg2
G issetto 1 iff argl >arg2
U issetto 1 iff argl and arg2 are incomparable (e.g., one arg is a “NaN.”)

This instruction causes an exception if either number is “signaling” NaN; no exception if the
numbers are “quiet” NaNs.

A non-floating-point instruction must be executed between a floating-point compare and a floating-
point branch instruction.

Note: the other floating-point arithmetic instructions (such as “fadds”) do not set the floating-point
condition codes.

Floating-Point Branch Instructions

There is a set of instructions to branch conditionally, depending on the state of the floating-point
condition codes.

fbl label
fble label
fbg label
fbge label
fbe label
fbne label
fbo label
fbu label

The last two branch instructions test whether the two values compared in the last compare
instruction were ordered or unordered.

Just like the integer branch instructions, there is a delay slot following the branch instruction. Due
to pipelining, the instruction immediately following the branch instruction in memory (i.e., the
instruction in the “delay slot”) is normally executed before the target instruction is executed. If the
annul bit in the instruction is set, the delay slot is only executed if the branch is taken; if the branch

is not taken, the delay instruction is annulled - that is, it is not executed. To set the annul bit, “,a” is
added to the instruction op-code. For example:

fble,a label

Note: In older versions of the SPARC (i.e., for Sparc-V8), the results of a floating-point compare
instruction were not available immediately. The programmer is required to insert an extra

Date Printed: April 5, 2006 Page 36

instruction between the compare and the following branch instruction. For Sparc-V9, this
restriction is removed.

f?t0? - Conversions Between Number Representations

The following instructions convert numbers from one representation to another.

fstoi fregs, fregd
fdtoi fregs, fregd
fqtoi fregs, fregd
fitos fregs, fregd
fitod fregs,fregd
fitogq fregs,fregd
fstod fregs, fregd
fstoq fregs, fregd
fdtos fregs, fregd
fdtoq fregs, fregd
fqgtos fregs, fregd
fqgtod fregs, fregd

These instructions can be understood using the following abbreviations. For example, the
instruction “fstoq” takes a single precision floating-point number (s) stored in register “fregs”
and produces a quad precision (q) representation of the same number, and stores it in the four
registers “fregd,” “fregd+1,” “fregd+2,” and “fregd+3.”

1 = signed integer word

s = single precision floating-point
d = double precision floating-point
q = quad precision floating-point

Both source and destination registers are floating registers, even in the case of signed integer data.
Condition codes are not set. The number will be rounded when it doesn't fit.

gdb - A Debugger for Unix Programs

To use the debugger, you should compile / assemble with the “-g” option. This will include
symbol table information in the executable file. (Normally, symbol information is included in the .o
file for the linker, but is excluded from the executable file.) Gdb will work with assembly code
programs and with programs written in high-level languages like C and Pascal.

gcc -g myProg.s
or: gcc -g myProg.c

To invoke the debugger, type:
gdb a.out

Gdb accepts commands from the user. Each command may be spelled out fully and many
commands may be abbreviated. Some of the gdb commands are:

Date Printed: April 5, 2006 Page 37

help [keyword]
Displays help info.
r [args]

Short for “run.” Begin program execution. Normally, when gdb begins, it loads the
program, but does not begin its execution. Command-line arguments may be provided
optionally.

b *addr

Sets a breakpoint. Execution will proceed up to the indicated instruction and will then be
suspended. You will then be thrown into the gdb command line interpreter.

ib

Short for “info break.” This displays a list of all the breakpoints that have been set.

Short for “continue.” Resumes execution after a breakpoint has been reached.

p S$g4

Short for “print.” Prints the value of a register. Note that registers are specified with “ $
instead of “%”. Data may be displayed in a number of different formats. The format
codes are:

d - decimal

X - hex

t - binary

f - floating-point
1 - instruction

¢ - character

The default is to display in decimal. To display the value of register %i5 in hexadecimal,
type:

p/x $i5
To look at the current value of the program counter type:
p/x $pc
The following command performs a computation and displays the result:

p 23+17

Date Printed: April 5, 2006 Page 38

x addr
Short for “examine.” This command is used to dump memory.
In the next example, the first word of the “main” procedure is displayed as an instruction:
x/1i main
Hitting “enter” will repeat the previous command, generally incrementing the “current
location.” Thus, by hitting enter several times, you can display several instructions from the

“main” routine.

You may also display the values of variables. For example, to print the value of a variable in
hex type:

x/x myvar
disass
This instruction will disassemble and display the current routine.
set $g4=0x456789AB

This instruction will move data into register %g4. You may also use this instruction to alter
memory. Consider the following code:

.data
.global myVar
myVar: .word
To display memory contents type:
p myVar
That would print the variable in decimal; to see it in hex type:
p/x myVar
To alter memory type:
set myVar=0xFEDCBA34
To display the contents of memory at an arbitrary location (e.g., 1C0001¢) type:
x/x 0x1C000
ni [count]
Short for “next instruction.” This command executes a single instruction and the returns
to the gdb command line interpreter. It steps “over” calls—that is, if the current instruction

is a “call,” this command will execute the entire routine and stop just after it returns. The
count is optional; if provided, this command will execute “count” instructions before

stopping.

Date Printed: April 5, 2006 Page 39

si [count]

Short for “step into.” This command executed a single instruction and the returns to the
gdb command line interpreter. It steps “into” calls—that is, if the current instruction is a
“call,” this command moves to the first instruction of the routine and suspends execution.
You may then single step through the routine. The count is optional; if provided, this
command will execute “count” instructions before stopping.

next [count]
This command single steps a single source-code line, stepping over called subroutines.
step [count]

This command single steps a single source-code line, stepping into called subroutines.

This command quits gdb.

where
bt

These two commands print information from the activation record stack, indicating which
routines are currently active. “bt” stands for “backtrace.” They each display slightly
different information.

call foo(1,2,3)

From gdb you can call source-level routines. For example, to call a routine named “foo”
providing three arguments, you can type the above command. If “foo” returns a value, it
will be printed.

A file called “.gdbinit” will be consulted upon starting gdb. For example, the following file
will set a breakpoint at the beginning of the main routine, set up things so the gdb will display
the current instruction whenever a breakpoint is hit, begin the program (which will immediately
stop at the first instruction), and finally, disassemble and print the main routine.

.gdbinit
break *&main
display/i $pc
r
disass

Date Printed: April 5, 2006 Page 40

