CS-321 Compiler Design

Homework #1

Due Date: Thursday, October 6, 2005, 2:00

Your Name:

Your Email:

1. What is the input to a compiler called?

2. What is the output called?

3. What are the phases in a typical compiler?

4. Lexical Analysis breaks the input into what?

5. What kind of grammars are we concerned with?

6. The symbol table generally has an entry for each ... what?

7. What phase is type-checking done in?

8. Is the code generated in the intermediate code generation phase target-machine-

specific or target-machine-independent?

Page 1



CS-321 Compiler Design

9. When the compiler detects an error in the source, should it halt after printing a
message?

10. A compiler will not normally detect logical errors (i.e., program bugs). What 3 kinds
of errors will a compiler catch?

11. What is a lexeme?

12. What are blanks, tabs, and newlines called?

13. Are comments passed to the parser? Why or why not?

14. For each token, the lexer passes 2 pieces of info to the parser. What are they?

15. For what types of token would additional information be needed?

16. Some tokens (like “if””, “while”, “class”) are built into the language. What are these

tokens called?

17. Here is a regular expression describing identifier tokens:
Letter { Letter | Digit }*

Describe the tokens specified by this regular expression:
Digit { Letter }* Digit

18. How does a “string table” differ from a “symbol Table”?

Page 2



CS-321 Compiler Design

19.

Why would we enter keywords into a string table?

20.

Would it be faster to use a hash-table or an array to implement a string table?

21.

Can the same ID have more than one meaning in a program?

22.

In a CFG, what does epsilon mean? Please do not say “nothing”.

23.

24.

What is the Greek letter for epsilon?

In a parse tree, the internal nodes correspond to what... Terminals or Non-terminals?

25.

In a parse tree, the leaves correspond to what... Terminals or Non-terminals?

26.

Here is a grammar

A —Ab

—C

Draw a parse tree for the string “c b b b”

Page 3



CS-321 Compiler Design

28. What is an ambiguous grammar?

29. Is it a good idea for programming languages to use ambiguous grammars?

30. The expression x-y-z means either (x-y)-z or x-(y-z). This is a question of operator...

what?

31. The expression x+y-z means either (x+y)-z or x+(y-z). This is a question of

operator... what?

32. Is this grammar rule left- or right-recursive?
A —Ab

33. What is the input to a parser (in the context of compiling)?

34. What is the input to a parser generator?

35. Can we construct a parser which will parse / recognize any CFG?

36. What are the two major approaches to parsing?

37. We can create a parser by constructing a routine for each non-terminal. This

approach is called... what?

38. Which is a problem in this approach... left- or right-recursion in the grammar rules?

39. Compared to a parse tree, is an abstract syntax tree larger or smaller?

Page 4



CS-321 Compiler Design

40. When we implement an AST in Java, we’ll use a single ...what?... to represent each

kind of node in the AST.

41. When we construct a specific AST, we’ll use a single ...what?... to represent each

node.

Page 5



