
Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 1

-----------------------------  ProducerConsumer  ---------------------------------

  -- This code implements the consumer-producer task.  There are several
  -- "producers", several "consumers", and a single shared buffer.
  --
  -- The producers are named "A", "B", "C", etc.  Each producer is a thread which
  -- will loop 5 times.  For each iteration, the producer thread will add its
  -- character to a shared buffer.  For example, "Producer-B" will add 5 "B"s to
  -- the shared buffer.  Since the 5 producer threads will run concurrently, the
  -- characters will be added in an unpredictable order.  Regardless of the order,
  -- however, there will be five "A"s, five "B"s, five "C"s, etc.
  --
  -- There are several consumers.  Each consumer is a thread which executes an
  -- inifinite loop.  During each iteration of its loop, a consumer will remove
  -- whatever character is next in the buffer and will print it.
  --
  -- The shared buffer is a FIFO queue of characters.  The producers put characters
  -- in one end and the consumers take characters out the other end.  Think of a
  -- section of steel pipe.  The capacity of the buffer is limited to BUFFER_SIZE
  -- characters.
  --
  -- This code illustrates the mechanisms required to synchronize the producers,
  -- consumers, and the shared buffer.  Consumers must wait if the buffer is empty.
  -- Producers must wait if the buffer is full.  Furthermore, the buffer is a shared
  -- data structure.  (The buffer is implemented as an array with pointers to the
  -- next position to add or remove characters.)  No two threads are allowed to
  -- access these pointers simultaneously, or else errors may result.
  --
  -- To perform the synchronization, three semaphores are used.  The semaphore
  -- called "bufferContents" is used to count the number of elements in the buffer.
  -- It is used to force consumers to wait when the buffer is empty.  The
  -- semaphore called "bufferSpaceLeft" is used to count the number of free spaces
  -- left in the buffer.  It is used to make producers wait when the buffer is full.
  -- The mutex called "bufferLock" is used as a lock to make sure that only
  -- one thread at a time accesses the shared buffer.
  --
  -- To document what is happening, each producer will print a line when it adds
  -- a character to the buffer.  The line printed will include the buffer contents
  -- along with the name of the poducer.  Also, each time a consumer removes a
  -- character from the buffer, it will print a line, showing the buffer contents
  -- after the removal, along with the name of the consumer thread.  Each line of
  -- output is formated so that you can see the buffer growing and shrinking.  By
  -- reading the output vertically, you can also see what each thread does.
  --
  -- The output itself can also be regarded as a shared resource.  In order to
  -- ensure that all printing is done at the time the buffer is modified, the
  -- print statements are done while the "bufferLock" is held.  Since only one
  -- thread at a time can hold the "bufferLock", we are assured that several
  -- consecutive print statements will be executed as a group, without output from
  -- other threads being interleaved.

  const
    BUFFER_SIZE = 5

  var
    buffer: array [BUFFER_SIZE] of char
    bufferSize: int = 0
    bufferNextIn: int = 0



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 2

    bufferNextOut: int = 0
    bufferContents: Semaphore = new Semaphore
    bufferSpaceLeft: Semaphore = new Semaphore
    bufferLock: Mutex = new Mutex
    thArray: array [8] of Thread = new array of Thread { 8 of new Thread }

  function ProducerConsumer ()

      buffer = new array of char {BUFFER_SIZE of '?'}
      bufferLock.Init ()
      bufferContents.Init (0)
      bufferSpaceLeft.Init (BUFFER_SIZE)
      print ("     ")

      thArray[0].Init ("Consumer-1                               |      ")
      thArray[0].Fork (Consumer, 1)

      thArray[1].Init ("Consumer-2                               |          ")
      thArray[1].Fork (Consumer, 2)

      thArray[2].Init ("Consumer-3                               |              ")
      thArray[2].Fork (Consumer, 3)

      thArray[3].Init ("Producer-A         ")
      thArray[3].Fork (Producer, 1)

      thArray[4].Init ("Producer-B             ")
      thArray[4].Fork (Producer, 2)

      thArray[5].Init ("Producer-C                 ")
      thArray[5].Fork (Producer, 3)

      thArray[6].Init ("Producer-D                     ")
      thArray[6].Fork (Producer, 4)

      thArray[7].Init ("Producer-E                         ")
      thArray[7].Fork (Producer, 5)

      ThreadFinish ()
    endFunction

  function Producer (myId: int)
      var
        i: int
        c: char = intToChar ('A' + myId - 1)
      for i = 1 to 5
        -- Perform synchronization
        bufferSpaceLeft.Wait()
        bufferLock.Lock()
        -- Add c to the buffer
        buffer [bufferNextIn] = c
        bufferNextIn = (bufferNextIn + 1) % BUFFER_SIZE
        bufferSize = bufferSize + 1
        -- Print a line showing the state
        PrintBuffer (c)
        -- Perform synchronization
        bufferContents.Signal()
        bufferLock.Unlock()



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 3

      endFor
    endFunction

  function Consumer (myId: int)
      var
        c: char
      while true
        -- Perform synchroniztion...
        bufferContents.Wait()
        bufferLock.Lock()
        -- Remove next character from the buffer
        c = buffer [bufferNextOut]
        bufferNextOut = (bufferNextOut + 1) % BUFFER_SIZE
        bufferSize = bufferSize - 1
        -- Print a line showing the state
        PrintBuffer (c)
        -- Perform synchronization...
        bufferSpaceLeft.Signal()
        bufferLock.Unlock()
      endWhile
    endFunction

  function PrintBuffer (c: char)
    --
    -- This method prints the buffer and what we are doing to it.  Each
    -- line should have
    --        <buffer>  <threadname> <character involved>
    -- We want to print the buffer as it was *before* the operation;
    -- however, this method is called *after* the buffer has been modified.
    -- To achieve the right order, we print the operation first, skip to
    -- the next line, and then print the buffer.  Assuming we start by
    -- printing an empty buffer first, and we are willing to end the output
    -- in the middle of a line, this prints things in the desired order.
    --
      var
        i, j: int
      -- Print the thread name, which tells what we are doing.
      print ("   ")
      print (currentThread.name)  -- Will include right number of spaces after name
      printChar (c)
      nl ()
      -- Print the contents of the buffer.
      j = bufferNextOut
      for i = 1 to bufferSize
        printChar (buffer[j])
        j = (j + 1) % BUFFER_SIZE
      endFor
      -- Pad out with blanks to make things line up.
      for i = 1 to BUFFER_SIZE-bufferSize
        printChar (' ')
      endFor
    endFunction

-----------------------------  Dining Philosophers  ---------------------------------

  -- This code is an implementation of the Dining Philosophers problem.  Each



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 4

  -- philosopher is simulated with a thread.  Each philosopher thinks for a while
  -- and then wants to eat.  Before eating, he must pick up both his forks.
  -- After eating, he puts down his forks.  Each fork is shared between
  -- two philosophers and there are 5 philosophers and 5 forks arranged in a
  -- circle.
  --
  -- Since the forks are shared, access to them is controlled by a monitor
  -- called "ForkMonitor".  The monitor is an object with two "entry" methods:
  --     PickupForks (phil)
  --     PutDownForks (phil)
  -- The philsophers are numbered 0 to 4 and each of these methods is passed an integer
  -- indicating which philospher wants to pickup (or put down) the forks.
  -- The call to "PickUpForks" will wait until both of his forks are
  -- available.  The call to "PutDownForks" will never wait and may also
  -- wake up threads (i.e., philosophers) who are waiting.
  --
  -- Each philospher is in exactly one state: HUNGRY, EATING, or THINKING.  Each time
  -- a philosopher's state changes, a line of output is printed.  The output is organized
  -- so that each philosopher has column of output with the following code letters:
  --           E    --  eating
  --           .    --  thinking
  --         blank  --  hungry (i.e., waiting for forks)
  -- By reading down a column, you can see the history of a philosopher.
  --
  -- The forks are not modeled explicitly.  A fork is only picked up
  -- by a philospher if he can pick up both forks at the same time and begin
  -- eating.  To know whether a fork is available, it is sufficient to simply
  -- look at the status's of the two adjacent philosophers.  (Another way to state
  -- the problem is to forget about the forks altogether and stipulate that a
  -- philosopher may only eat when his two neighbors are not eating.)

  enum HUNGRY, EATING, THINKING
  var
    mon: ForkMonitor
    philospher: array [5] of Thread = new array of Thread {5 of new Thread }

  function DiningPhilosophers ()

      print ("Plato\n")
      print ("    Sartre\n")
      print ("        Kant\n")
      print ("            Nietzsche\n")
      print ("                Aristotle\n")

      mon = new ForkMonitor
      mon.Init ()
      mon.PrintAllStatus ()

      philospher[0].Init ("Plato")
      philospher[0].Fork (PhilosphizeAndEat, 0)

      philospher[1].Init ("Sartre")
      philospher[1].Fork (PhilosphizeAndEat, 1)

      philospher[2].Init ("Kant")
      philospher[2].Fork (PhilosphizeAndEat, 2)

      philospher[3].Init ("Nietzsche")



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 5

      philospher[3].Fork (PhilosphizeAndEat, 3)

      philospher[4].Init ("Aristotle")
      philospher[4].Fork (PhilosphizeAndEat, 4)

     endFunction

  function PhilosphizeAndEat (p: int)
    --
    -- The parameter "p" identifies which philosopher this is.
    -- In a loop, he will think, acquire his forks, eat, and
    -- put down his forks.
    --
      var
        i: int
      for i = 1 to 7
        -- Now he is thinking
        mon. PickupForks (p)
        -- Now he is eating
        mon. PutDownForks (p)
      endFor
    endFunction

  class ForkMonitor
    superclass Object
    fields
      monitorLock: Mutex                   -- The monitor lock
      status: array [5] of int             -- For each philospher: HUNGRY, EATING, or
THINKING
      startEating: array [5] of Condition  -- Signaled when eating can begin
    methods
      Init ()
      PickupForks (p: int)                 -- An external "entry" method
      PutDownForks (p: int)                -- An external "entry" method
      CheckAboutEating (p: int)            -- Internal to the monitor
      PrintAllStatus ()
  endClass

  behavior ForkMonitor

    method Init ()
      --
      -- Initialize so that all philosophers are THINKING.  Also create
      -- the monitor lock and the 5 condition variables.
      --
        var i: int
        status = new array of int { 5 of THINKING }
        startEating = new array [5] of Condition { 5 of new Condition }
        for i = 0 to 4
          startEating[i].Init ()
        endFor
        monitorLock = new Mutex
        monitorLock.Init ()
      endMethod

    method PickupForks (p: int)
      --
      -- This method is called when philosopher 'p' is wants to eat.



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 6

      -- Change his status to HUNGRY and then see if he can begin eating.
      -- If he was not able to begin immediately, then this thread must
      -- wait.
      --
        monitorLock.Lock ()
        status [p] = HUNGRY
        self.PrintAllStatus ()
        self.CheckAboutEating (p)
        if status [p] != EATING
          startEating [p].Wait (& monitorLock)
        endIf
        monitorLock.Unlock ()
      endMethod

    method PutDownForks (p: int)
      --
      -- This method is called when the philosopher 'p' is done eating.
      -- Change his status.  Also, this might make it possible for his
      -- left and right neighbors to begin eating, so check on them.
      --
        monitorLock.Lock ()
        status [p] = THINKING
        self.PrintAllStatus ()
        self.CheckAboutEating ((p+1) % 5)
        self.CheckAboutEating ((p-1) % 5)
        monitorLock.Unlock ()
      endMethod

    method CheckAboutEating (p: int)
      --
      -- See if the p-th philosopher should begin eating.  He should begin
      -- if he is HUNGRY and if his left and right neighbors are not eating.
      -- If so, change his status to EATING.  Also, it could be that this
      -- philosopher's thread was waiting; signal that thread so he can
      -- resume execution.
      --
        if status [p] == HUNGRY &&
           status [(p+1) % 5] != EATING &&
           status [(p-1) % 5] != EATING
          status [p] = EATING
          self.PrintAllStatus ()
          startEating [p].Signal (& monitorLock)
        endIf
      endMethod

    method PrintAllStatus ()
      --
      -- Print a single line showing the status of all philosophers.
      --      '.' means thinking
      --      ' ' means hungry
      --      'E' means eating
      -- Note that this method is internal to the monitor.  Thus, when
      -- it is called, the monitor lock will already have been acquired
      -- by the thread.  Therefore, this method can never be re-entered,
      -- since only one thread at a time may execute within the monitor.
      -- Consequently, printing is safe.  This method calls the "print"
      -- routine several times to print a single line, but these will all
      -- happen without interuption.



Project 2 – Solution to Producer/Consumer and Dining Philosophers

Page 7

      --
        var
          p: int
        for p = 0 to 4
          switch status [p]
            case HUNGRY:
              print ("    ")
              break
            case EATING:
              print ("E   ")
              break
            case THINKING:
              print (".   ")
              break
          endSwitch
        endFor
        nl ()
      endMethod


