Project 2 — Solution to Producer/Consumer and Dining Philosophers

----------------------------- ProducerCoOnsSumer —-—————————— e

-- This code implements the consumer-producer task. There are several
-- "producers", several "consumers", and a single shared buffer.

-- The producers are named "A", "B", "C", etc. Each producer is a thread which
-- will loop 5 times. For each iteration, the producer thread will add its

-- character to a shared buffer. For example, "Producer-B" will add 5 "B"s to
-- the shared buffer. Since the 5 producer threads will run concurrently, the
-- characters will be added in an unpredictable order. Regardless of the order,
-- however, there will be five "A"s, five "B"s, five "C"s, etc.

-- There are several consumers. Each consumer is a thread which executes an
-- inifinite loop. During each iteration of its loop, a consumer will remove
-- whatever character is next in the buffer and will print it.

-- The shared buffer is a FIFO queue of characters. The producers put characters
-- in one end and the consumers take characters out the other end. Think of a

-- section of steel pipe. The capacity of the buffer is limited to BUFFER SIZE
-- characters.

-- This code illustrates the mechanisms required to synchronize the producers,

-- consumers, and the shared buffer. Consumers must wait if the buffer is empty.
-- Producers must wait if the buffer is full. Furthermore, the buffer is a shared
-- data structure. (The buffer is implemented as an array with pointers to the

-- next position to add or remove characters.) No two threads are allowed to

-- access these pointers simultaneously, or else errors may result.

-- To perform the synchronization, three semaphores are used. The semaphore

-- called "bufferContents" is used to count the number of elements in the buffer.
-- It is used to force consumers to wait when the buffer is empty. The

-- semaphore called "bufferSpaceLeft" is used to count the number of free spaces
-- left in the buffer. It is used to make producers wait when the buffer is full.
-- The mutex called "bufferLock" is used as a lock to make sure that only

-- one thread at a time accesses the shared buffer.

-- To document what is happening, each producer will print a line when it adds
-- a character to the buffer. The line printed will include the buffer contents
-- along with the name of the poducer. Also, each time a consumer removes a

-- character from the buffer, it will print a line, showing the buffer contents
-- after the removal, along with the name of the consumer thread. Each line of
-- output is formated so that you can see the buffer growing and shrinking. By
-- reading the output vertically, you can also see what each thread does.

-- The output itself can also be regarded as a shared resource. In order to

-- ensure that all printing is done at the time the buffer is modified, the

-- print statements are done while the "bufferLock" is held. Since only one

-- thread at a time can hold the "bufferLock", we are assured that several

-- consecutive print statements will be executed as a group, without output from
-- other threads being interleaved.

const
BUFFER SIZE = 5

var
buffer: array [BUFFER_SIZE] of char
bufferSize: int = 0

bufferNextIn: int = 0

Page 1



Project 2 — Solution to Producer/Consumer and Dining Philosophers

bufferNextOut: int = 0

bufferContents: Semaphore = new Semaphore

bufferSpaceLeft: Semaphore = new Semaphore

bufferLock: Mutex = new Mutex

thArray: array [8] of Thread = new array of Thread { 8 of new Thread }

function ProducerConsumer ()

buffer = new array of char {BUFFER SIZE of '?'}
bufferLock.Init ()

bufferContents.Init (0)

bufferSpaceLeft.Init (BUFFER_SIZE)

print (" ")

thArray[0].Init ("Consumer-1 | ")
thArray[0].Fork (Consumer, 1)

thArray[1].Init ("Consumer-2
thArray[l].Fork (Consumer, 2)

thArray[2].Init ("Consumer-3
thArray[2].Fork (Consumer, 3)

thArray[3].Init ("Producer-A ")
thArray[3].Fork (Producer, 1)

thArray[4].Init ("Producer-B ")
thArray[4].Fork (Producer, 2)

thArray[5].Init ("Producer-C ")
thArray[5].Fork (Producer, 3)

thArray[6].Init ("Producer-D ")
thArray[6].Fork (Producer, 4)

thArray[7].Init ("Producer-E ")
thArray[7].Fork (Producer, 5)

ThreadFinish ()
endFunction

function Producer (myId: int)

var
i: int
c: char = intToChar ('A' + myId - 1)

for i =1 to 5
-- Perform synchronization
bufferSpaceLeft.Down()
bufferLock.Lock()
-- Add c to the buffer
buffer [bufferNextIn] = c
bufferNextIn = (bufferNextIn + 1) % BUFFER_SIZE
bufferSize = bufferSize + 1
-- Print a line showing the state
PrintBuffer (c)
-- Perform synchronization
bufferContents.Up()
bufferLock.Unlock()

Page 2



Project 2 — Solution to Producer/Consumer and Dining Philosophers

endFor
endFunction

function Consumer (myId: int)

var
c: char

while true
-- Perform synchroniztion...
bufferContents.Down()
bufferLock.Lock()
-- Remove next character from the buffer
c = buffer [bufferNextOut]
bufferNextOut = (bufferNextOut + 1) % BUFFER_SIZE
bufferSize = bufferSize - 1
-- Print a line showing the state
PrintBuffer (c)
-- Perform synchronization...
bufferSpaceLeft.Up()
bufferLock.Unlock()

endWhile

endFunction

function PrintBuffer (c: char)

-- This method prints the buffer and what we are doing to it. Each

-- line should have

- <buffer> <threadname> <character involved>

-- We want to print the buffer as it was *before* the operation;

-- however, this method is called *after* the buffer has been modified.
-- To achieve the right order, we print the operation first, skip to

-- the next line, and then print the buffer. Assuming we start by

-- printing an empty buffer first, and we are willing to end the output
-- in the middle of a line, this prints things in the desired order.

var
i, j: int
-- Print the thread name, which tells what we are doing.

print (" ")

print (currentThread.name) -- Will include right number of spaces after name
printChar (c)

nl ()

-- Print the contents of the buffer.
j = bufferNextOut
for i = 1 to bufferSize
printChar (buffer[j])
j = (j + 1) % BUFFER_SIZE
endFor
-- Pad out with blanks to make things line up.
for i = 1 to BUFFER_SIZE-bufferSize
printChar (' ')
endFor
endFunction

----------------------------- Dining Philosophers ——————————

-- This code is an implementation of the Dining Philosophers problem. Each

Page 3



enu
var

Project 2 — Solution to Producer/Consumer and Dining Philosophers

philosopher is simulated with a thread. Each philosopher thinks for a while
and then wants to eat. Before eating, he must pick up both his forks.

After eating, he puts down his forks. Each fork is shared between

two philosophers and there are 5 philosophers and 5 forks arranged in a
circle.

Since the forks are shared, access to them is controlled by a monitor

called "ForkMonitor". The monitor is an object with two "entry" methods:
PickupForks (phil)
PutDownForks (phil)

The philsophers are numbered 0 to 4 and each of these methods is passed an integer

indicating which philospher wants to pickup (or put down) the forks.

The call to "PickUpForks" will wait until both of his forks are

available. The call to "PutDownForks" will never wait and may also

wake up threads (i.e., philosophers) who are waiting.

Each philospher is in exactly one state: HUNGRY, EATING, or THINKING. Each time
a philosopher's state changes, a line of output is printed. The output is organized
so that each philosopher has column of output with the following code letters:

E -- eating
. -- thinking
blank -- hungry (i.e., waiting for forks)

By reading down a column, you can see the history of a philosopher.

The forks are not modeled explicitly. A fork is only picked up

by a philospher if he can pick up both forks at the same time and begin
eating. To know whether a fork is available, it is sufficient to simply

look at the status's of the two adjacent philosophers. (Another way to state
the problem is to forget about the forks altogether and stipulate that a
philosopher may only eat when his two neighbors are not eating.)

m HUNGRY, EATING, THINKING

mon: ForkMonitor

p

fun

hilospher: array [5] of Thread = new array of Thread {5 of new Thread }

ction DiningPhilosophers ()

print ("Plato\n")

print (" Sartre\n")

print (" Kant\n")

print (" Nietzsche\n")
print (" Aristotle\n")

mon = new ForkMonitor
mon.Init ()
mon.PrintAllStatus ()

philospher[0].Init ("Plato")
philospher[0].Fork (PhilosphizeAndEat, 0)

philospher[1l].Init ("Sartre")
philospher[l].Fork (PhilosphizeAndEat, 1)

philospher[2].Init ("Kant")
philospher[2].Fork (PhilosphizeAndEat, 2)

philospher[3].Init ("Nietzsche")

Page 4



Project 2 — Solution to Producer/Consumer and Dining Philosophers

philospher[3].Fork (PhilosphizeAndEat,

philospher[4].Init ("Aristotle")

philospher[4].Fork (PhilosphizeAndEat,

endFunction
function PhilosphizeAndEat (p: int)

-- The parameter "p

3)

4)

identifies which philosopher this is.

-- In a loop, he will think, acquire his forks, eat, and

-- put down his forks.

var
i: int
for i =1 to 7
-- Now he is thinking
mon. PickupForks (p)
-- Now he is eating
mon. PutDownForks (p)
endFor
endFunction

class ForkMonitor
superclass Object
fields
monitorLock: Mutex
status: array [5] of int
THINKING
startEating: array [5] of Condition
methods
Init ()
PickupForks (p: int)
PutDownForks (p: int)
CheckAboutEating (p: int)
PrintAllStatus ()
endClass

behavior ForkMonitor

method Init ()

-- Initialize so that all philosophers are THINKING.

The monitor lock
For each philospher: HUNGRY, EATING,

Signaled when eating can begin

An external "entry" method
An external "entry" method
Internal to the monitor

Also create

-- the monitor lock and the 5 condition variables.

var i: int

status = new array of int { 5 of THINKING }
startEating = new array [5] of Condition { 5 of new Condition }

for i = 0 to 4
startEating[i].Init ()
endFor
monitorLock = new Mutex
monitorLock.Init ()
endMethod

method PickupForks (p: int)

-- This method is called when philosopher 'p'

is wants to eat.

Page 5

or



Project 2 — Solution to Producer/Consumer and Dining Philosophers

-- Change his status to HUNGRY and then see if he can begin eating.
-- If he was not able to begin immediately, then this thread must
-- wait.

monitorLock.Lock ()

status [p] = HUNGRY

self.PrintAllStatus ()

self.CheckAboutEating (p)

if status [p] != EATING
startEating [p].Wait (& monitorLock)
endIf
monitorLock.Unlock ()
endMethod

method PutDownForks (p: int)
-- This method is called when the philosopher 'p' is done eating.
-- Change his status. Also, this might make it possible for his
-- left and right neighbors to begin eating, so check on them.

monitorLock.Lock ()
status [p] = THINKING
self.PrintAllStatus ()
self.CheckAboutEating ((pt+l) % 5)
self.CheckAboutEating ((p-1) % 5)
monitorLock.Unlock ()

endMethod

method CheckAboutEating (p: int)

-- See if the p-th philosopher should begin eating. He should begin
-- if he is HUNGRY and if his left and right neighbors are not eating.
-- If so, change his status to EATING. Also, it could be that this
-- philosopher's thread was waiting; signal that thread so he can

-- resume execution.

if status [p] == HUNGRY &&
status [(pt+tl) % 5] != EATING &&
status [(p-1) % 5] != EATING
status [p] = EATING

self.PrintAllStatus ()
startEating [p].Signal (& monitorLock)
endIf
endMethod

method PrintAllStatus ()

-- Print a single line showing the status of all philosophers.

- .' means thinking

- ' ' means hungry

- 'E' means eating

-- Note that this method is internal to the monitor. Thus, when

-- it is called, the monitor lock will already have been acquired
-- by the thread. Therefore, this method can never be re-entered,
-- since only one thread at a time may execute within the monitor.
-- Consequently, printing is safe. This method calls the "print"
-- routine several times to print a single line, but these will all
-- happen without interuption.

Page 6



Project 2 — Solution to Producer/Consumer and Dining Philosophers

var
p: int
for p = 0 to 4
switch status [p]
case HUNGRY:
print (" ")
break
case EATING:
print ("E ")
break
case THINKING:
print (". ")
break
endSwitch
endFor
nl ()
endMethod

Page 7



