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This note sketches out some ideas on how to complete Project 4, task 4, which asks you to implement 
“Hoare Semantics” for condition variables. 
 
Currently, “Mesa Semantics” are implemented.  Recall that the current implementation of monitors 
works as follows: 
 

(1) Each monitor is implemented by a class. 
 
(2) There is a Mutex lock associated with each monitor class, which we can call the “monitor lock”. 
 
(3) Some methods are “entry methods”.  At the beginning of each entry method, the programmer 

must remember to execute: 
 
  monitorLock.Lock() 
 
(4) Just before returning from an entry method, the programmer must remember to execute: 
 
  monitorLock.Unlock() 
 
(5) The monitor may also have several “condition variables”.  There is a class called Condition, 

with the following methods: Init, Signal, Wait and Broadcast. 
 
(6) The Condition class is implemented with a list called waitingThreads. 
 
(7) The Wait operation is implemented by the following steps: 
 

 disable interrupts 
 monitorLock.Unlock () 
 waitingThreads.AddToEnd (currentThread) 
 currentThread.Sleep () 
 monitorLock.Lock () 
 re-enable interrupts 

 
(8) The Signal operation is implemented by the following steps: 
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  disable interrupts 
  get the next thread from the “waitingThreads” list 
  put it on the ready list, thereby waking it up 
  re-enable interrupts 

 
As an example, assume thread “A” executes a Wait.  Later, thread “B ” executes a Signal. 
 
When thread A executes Wait, it will first release the monitor so that other threads can enter the “entry 
methods”.  Then A goes to sleep, waiting until a Signal operation is executed by some other thread.  
Once awake, thread A must re-acquire the monitor lock.  Note that thread A will possibly have to go to 
sleep a second time, while waiting for the monitor lock.  There may be other threads, such as “C”, 
already waiting for the monitor lock.  If so, then once the monitor becomes free, C will be awakened 
first and will enter the monitor before A. 
 
Our goal is to implement Hoare Semantics, which will ensure that threads like C will be forced to wait 
and thread A will be effectively moved to the head of the line and will get back into the monitor before 
C. 
 
To implement Hoare semantics, let us redefine how we implement monitors and condition variables.  
Each monitor will still be implemented with a class and there will be a class to implement condition 
variables.  However, we will slightly modify the code that must be executed on exit from a entry method 
and we will redefine the Condition class. 
 

(1) Each monitor is implemented by a class, as before. 
 
(2) There is a Mutex lock associated with each monitor class, which we can call the “monitor lock”.  

In addition, there is also an integer count, called “nextCount” and a semaphore called 
“nextSem”.  Both the count and the semaphore must be initialized to 0. 

 
(3) As before, at the beginning of each entry method, the programmer must remember to execute: 
 
  monitorLock.Lock() 
 
(4) Just before returning from an entry method, the programmer must remember to execute this 

code: 
 

 if nextCount > 0 
   nextSem.Up() 

  else 
    monitorLock.Unlock() 
  endIf 
 

At any time there may be normal threads (like C) waiting to enter the monitor.  As before, these 
threads are waiting to acquire the monitorLock.  But there may also be other threads which have 
higher priority and which must be let into the monitor sooner.  These threads are waiting on 
nextSem and nextCount tells how many such high-priority threads there are waiting.  Whenever 
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a thread leaves the monitor, it must wake up a high priority thread first, if there are any.  That’s 
what the above code does. 

 
(5) Each “condition variable” is represented as an instance of a class, which we might call 

“HoareCondition” to prevent confusion with the existing Condition class.  [Remember that you 
must not change any of the existing classes, or else some of the kernel code we are distributing 
may break.  Since we need to change the implementation of Signal and Wait, we will therefore 
create a new class, which we will call HoareCondition.]   This new class will have methods 
called Signal and Wait. 

 
(6) The HoareCondition class will contain an integer variable called “cnt” and a semaphore called 

“sem”.  These must be initialized to 0. 
 
(7) The “Wait” operation is implemented by the following steps: 
 
  cnt = cnt + 1 
  if nextCount > 0 
    nextSem.Up () 
  else 
    monitorLock.Unlock () 
  endIf 
  sem.Down () 
  cnt = cnt - 1 
 
(8) The “Signal” operation is implemented by the following steps: 
 
  if cnt > 0 
    nextCount = nextCount + 1 
    sem.Signal () 
    nextSem.Down () 
    nextCount = nextCount - 1 
  endIf 

 
In the implementation we gave you of Condition, the implementations of Signal and Wait explicitly 
disabled interrupts and manipulated the ready list.  In the implementation we are proposing here, we are 
working at a slightly higher level, by using semaphores. 
 
Let’s look at an example.  As before, assume thread A gets into the monitor first and executes a Wait.  
Then assume B gets into the monitor and executes a Signal.  Here is the sequence of what happens: 
 

 A enters the monitor 
  A acquires the “monitorLock” and proceeds 
 A executes a Wait on a HoareCondition variable called “X” 
  X.cnt is incremented 1 
  Since nextCount is zero, there is no high-priority thread waiting 
  The monitorLock is released 
  Thread A waits on X.sem 
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 Now B enters the monitor 
  B acquires the monitorLock (since it is free) and proceeds 
 B executes Signal on X, the HoareCondition upon which A is waiting 
  X.cnt is 1 so the following statements are executed... 
  nextCount is incremented to 1 
 X.sem is signaled with Up, so now Thread A is ready and possibly running. 
  [Perhaps A will run immediately, perhaps B will continue, or perhaps 
   both A and B are running simultaneously on separate CPUs.] 
  Thread B waits on nextSem 
  [Since B goes to sleep immediately, it doesn’t matter whether A or B 
   actually gets the CPU first.] 
 A wakes up from waiting on X.sem 
  X.cnt is decremented back to 0 
  Thread A proceeds. 

 
Note that no intervening thread C could have snuck in, since the first thing C will do is try to lock the 
monitor.  However, nowhere in the above sequence after B is in the monitor, is the monitorLock ever 
released.  Also notice that B acquired the monitorLock, but at the end, A is executing in the monitor.  
Also notice that B is suspended on the monitor’s nextSem; essentially B has become a high-priority 
thread which must be given precedence whenever the monitor becomes free. 
 
Now let’s assume that A is ready to leave the monitor.  Upon returning from the monitor entry method, 
the following sequence will occur... 
 

 A will check the count variable and will find that it is 1. 
 A will signal the nextSem semaphore and wake up B. 
 A will then return, leaving the monitor. 
 B, which was waiting on nextSem, will wake up. 
  [Note that the monitorLock has not been released, so no other waiting 
   threads, such as C, will be allowed to sneak in to the monitor.  After 
  A exits, B will resume execution.] 
 B will then decrement nextCount back to 0. 

 
From a higher-level perspective, when thread B invoked the Signal operation, B went to sleep 
immediately, then A woke up and ran to completion, and finally B was re-awakened. 
 
Later, when B is ready to leave the monitor, it will check nextCount and see that it is 0.  Finally B will 
release the monitorLock and allow threads like C to have a chance. 
 
To recap, the semantics implemented here will do the following: 
 
  (1) When thread B executes a Signal, it will go to sleep. 
  (2) Thread A, which has previously executed a Wait, will wake up and run. 
  (3) When thread A is done and leaves the monitor, thread B will wake up and resume. 
  (4) No other threads, like C, will be allowed in the monitor until B finally returns. 
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Let’s look at another scenario.  As before, imagine that A executes a Wait, then B enters the monitor.  
But this time, assume B also executes a Wait on X. 
 
So now, X.cnt will be incremented to 2 and there will be two threads waiting on X.sem.  The 
monitorLock will be released.  Now assume thread C comes along and enters the monitor.  Then thread 
C executes a Signal. 
 
This will wake up A, which has been waiting the longest.  C will then go to sleep, by waiting on 
nextSem.  Let’s look at these three cases, in turn: 
 

Case 1: Thread A executes a Signal. 
 
Case 2: Thread A exits; Thread C resumes and executes a Signal. 
 
Case 3: Thread A exits; Thread C resumes and exits.  Thread B continues to wait. 

 
In all cases, we start with this scenario: 
 
 A executed a Wait. 
 B executed a Wait. 
 C executed a Signal. 
 C is waiting on NextSem. 
 B is waiting on X.sem. 
 The monitorLock is locked (by C). 
 A is running. 
 
First look at case 1: Thread A executes a Signal.  In this case, A will wake up B.  Then A will wait on 
nextSem, after C.  B will run to completion and, upon leaving the monitor, will wake up C.  When C 
exits the monitor, it will wake up A, which will release the monitor lock. 
 
With this scenario, we have this sequence: 
 
 A executes a Wait. 
 B executes a Wait. 
 C executes a Signal and sleeps. 
 A wakes up. 
 A executes a Signal and sleeps. 
 B wakes up and exits the monitor. 
 C wakes up and exits the monitor. 
 A wakes up and exits the monitor. 
 
[Notice that the monitorLock will be released by a thread other than the one which acquired it.  In this 
example, C acquired the monitor lock, but it was thread A that finally released it.  The implementation 
we have provided for class Mutex considers this a bug.  It will check for it and cause an error.  
Therefore, in order to make this scheme work, we will need to re-implement Mutex and take out this 
error checking.  Alternately, we could simply use a Semaphore for the “monitorLock”.  We’d have to 
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initialize it with one excess signal and then use Wait to lock the monitorLock at the top of every entry 
method.] 
 
Also notice what happened from C’s point of view.  Thread C signaled thread A.  Since this is Hoare 
semantics, no threads intervened: upon the signal, C went to sleep immediately and thread A woke up 
and ran, with no intervening threads.  However, after that, it wasn’t so simple as “When A finishes, C 
will resume after its call to Signal.”  Instead, A decided to execute a Signal.  This allowed B to run and 
ended up allowing C to wake up and resume execution before A had actually completed. 
 
Next look at case 2: Thread A exits; thread C resumes and executes a Signal.  In this case, we get the 
following sequence of events: 
 
 A executes a Wait and sleeps. 
 B executes a Wait and sleeps. 
 C executes a Signal and sleeps. 
 A wakes up. 
 A leaves the monitor. 
 C wakes up. 
 C executes another Signal and sleeps again. 
 B wakes up. 
 B leaves the monitor. 
 C wakes up. 
 C leaves the monitor. 
 
Finally look at case 3: Thread A exits; thread C resumes and exits; thread B continues to wait.  In this 
case, we get the following sequence: 
 
 A executes a Wait and sleeps. 
 B executes a Wait and sleeps. 
 C executes a Signal and sleeps. 
 A wakes up. 
 A leaves the monitor. 
 C wakes up. 
 C leaves the monitor. 
 B is left waiting. 


