Solution to the

Gaming Parlor

Programming Project



A A A A A AL A A S A A A AL

Scenario:
Front desk with dice (resource units)
Groups request (e.g., 5) dice (They request resources)
Groups must wait, if none available
Dice are returned (resources are released)
A list of waiting groups... A ‘“condition” variable
The condition is signalled
The group checks and finds it needs to wait some more
The group (thread) waits
...and goes to the end of the line

Problem?




B P P e A A S A A A AL

Scenario:
Front desk with dice (resource units)
Groups request (e.g., 5) dice (They request resources)
Groups must wait, if none available
Dice are returned (resources are released)
A list of waiting groups... A ‘“condition” variable
The condition is signalled
The group checks and finds it needs to wait some more
The group (thread) waits
...and goes to the end of the line

Problem?
Starvation!




The Gamlng Parlor - Solution

Approach:
Serve every group ‘‘first-come-first-served”.

Implementation:
Keep the thread at the front of the line separate
“Leader” - the thread that is at the front of the line
Use 2 condition variables.
“Leader” will have at most one waiting thread
“RestOfLine” will have all other waiting threads




The Thread

function Group (numDice: int)

var i: int

for i =1 to 5
gameParlor.Acquire (numDice)
currentThread.Yield ()
gameParlor.Release (numDice)
currentThread.Yield ()

endFor

endFunction

thA.Init (“A”)
thA.Fork (Group, 4)



The Monitor

class GameParlor

superclass Object

fields
monitorLock: Mutex
leader: Condition
restOfLine: Condition
numberDiceAvail: int
numberOfWaitingGroups: int

methods
Init ()

Acquire (numNeeded: int)

Release (numReturned: int)

Print (str: String, count: int)
endClass




The Release Method

method Release (numReturned: int)
monitorLock.Lock ()

—-— Return the dice
numberDiceAvail = numberDiceAvail + numReturned

-—- Print
self.Print ("releases and adds back", numReturned)

-- Wakeup the first group in line (if any)
leader.Signal (&monitorLock)

monitorLock.Unlock ()
endMethod




The Acqulre Method

method Acquire (numNeeded: int)
monitorLock.Lock ()
-— Print
self .Print ("requests'", numNeeded)
-—- Indicate that we are waiting for dice.
numberOfWaitingGroups = numberOfWaitingGroups + 1
-— If there is a line, then get into 1it.
if numberOfWaitingGroups > 1
restOfLine.Wait (&monitorLock)

endIf
—— Now we're at the head of the line. Wait until

there are enough dice.
while numberDiceAvail < numNeeded
leader.Wait (&monitorLock)
endWhile




The Acqulre Method

-— Take our dice.
numberDiceAvail = numberDiceAvail - numNeeded

-—- Now we are no longer waiting, wakeup some other

group and leave.
numberOfWaitingGroups = numberOfWaitingGroups - 1
restOflLine.Signal (&monitorLock)

-—- Print
self .Print ("proceeds with", numNeeded)

monitorLock.Unlock ()
endMethod




