
1

Solution to the

Gaming Parlor
 Programming Project

2

The Gaming Parlor - Solution

Scenario:
Front desk with dice (resource units)
Groups request (e.g., 5) dice (They request resources)
Groups must wait, if none available
Dice are returned (resources are released)
A list of waiting groups... A “condition” variable
The condition is signalled
The group checks and finds it needs to wait some more
The group (thread) waits

...and goes to the end of the line

Problem?

3

The Gaming Parlor - Solution

Scenario:
Front desk with dice (resource units)
Groups request (e.g., 5) dice (They request resources)
Groups must wait, if none available
Dice are returned (resources are released)
A list of waiting groups... A “condition” variable
The condition is signalled
The group checks and finds it needs to wait some more
The group (thread) waits

...and goes to the end of the line

Problem?
Starvation!

4

The Gaming Parlor - Solution

Approach:
Serve every group “first-come-first-served”.

Implementation:
Keep the thread at the front of the line separate
“Leader” - the thread that is at the front of the line
Use 2 condition variables.

“Leader” will have at most one waiting thread
“RestOfLine” will have all other waiting threads

5

The Threads

 function Group (numDice: int)
 var i: int
 for i = 1 to 5
 gameParlor.Acquire (numDice)
 currentThread.Yield ()
 gameParlor.Release (numDice)
 currentThread.Yield ()
 endFor
 endFunction

 thA.Init (“A”)
 thA.Fork (Group, 4)
 ...

6

The Monitor

 class GameParlor
 superclass Object
 fields
 monitorLock: Mutex
 leader: Condition
 restOfLine: Condition
 numberDiceAvail: int
 numberOfWaitingGroups: int
 methods
 Init ()
 Acquire (numNeeded: int)
 Release (numReturned: int)
 Print (str: String, count: int)
 endClass

7

The Release Method

method Release (numReturned: int)
monitorLock.Lock ()

-- Return the dice
numberDiceAvail = numberDiceAvail + numReturned

-- Print
self.Print ("releases and adds back", numReturned)

-- Wakeup the first group in line (if any)
leader.Signal (&monitorLock)

monitorLock.Unlock ()
endMethod

8

The Acquire Method

method Acquire (numNeeded: int)
monitorLock.Lock ()
-- Print
self.Print ("requests", numNeeded)
-- Indicate that we are waiting for dice.
numberOfWaitingGroups = numberOfWaitingGroups + 1
-- If there is a line, then get into it.
if numberOfWaitingGroups > 1

restOfLine.Wait (&monitorLock)
endIf
-- Now we're at the head of the line. Wait until

there are enough dice.
while numberDiceAvail < numNeeded

leader.Wait (&monitorLock)
endWhile
...

9

The Acquire Method

...

-- Take our dice.
numberDiceAvail = numberDiceAvail - numNeeded

-- Now we are no longer waiting; wakeup some other
group and leave.

numberOfWaitingGroups = numberOfWaitingGroups - 1
restOfLine.Signal (&monitorLock)

-- Print
self.Print ("proceeds with", numNeeded)

monitorLock.Unlock ()
endMethod

