

INTELLIGENT HOME NETWORK

Architecture Paper for CS510

(Building Software Systems with Components)

Submitted on 12th of March, 2001

Shashidhar Lakkavalli(lakkavas@cs.pdx.edu)
Harkirat Singh(harkirat@cs.pdx.edu)

Department of Computer Science

Portland State University

Page 2 of 29

Contents

INTRODUCTION .. 3

1.1 INTRODUCTION .. 3

2 PROBLEM STATEMENT ... 4

2.1 HOW TO FORM A NETWORK OF DEVICES? ... 4
2.2 HOW CAN DIFFERENT TYPES OF DEVICES COEXIST ?... 5
2.3 WHO IS THE CONTROLLER ? ... 5

3 ARCHITECTURE... 6

3.1 OVERVIEW OF ARCHITECTURE... 6
3.1.1 Components .. 6
3.1.2 Design Concept... 6

4 MOTIVATION FOR COMPONENT OBJECT MODEL... 7

4.1 TECHNOLOGICAL BENEFITS OF USING COMPONENT OBJECT MODEL....................................... 7
4.2 COMMERCIAL BENEFITS OF COMPONENT OBJECT MODEL ... 8
4.3 DRAWBACK OF COMPONENT OBJECT MODEL .. 9

5 KEY INTERFACE AND UML DIAGRAMS ... 9

5.1 DETAILS OF INTERFACES.. 9
5.1.1 Database... 9
5.1.2 Context.. 10
5.1.3 Device Driver.. 12
5.1.4 Timer... 14
5.1.5 Locator.. 14
5.1.6 Communication... 14

6 INTERFACE REUSE ... 15

7 REFERENCE IMPLEMENTATION.. 15

8 CONCLUSIONS AND FUTURE WORK ... 18

APPENDICES... 20

DIAGRAMS .. 20

Page 3 of 29

INTRODUCTION

1.1 Introduction

Intelligent Home Network or (INTELHOMENET) is a network of home and
office gadgets and any controllable devices, which affect the day-to-day life of people.
With emerging technologies like Bluetooth, 3rd generation wireless, Personal Digital
Assistants and smart mobile phones capable of providing ubiquitous connectivity,
numerous applications come to the fore. In this paper, we propose an architecture
adopting the above said emerging technologies to provide a smart network of home
appliances, capable of reacting to user’s personal requirements.

The “First Generation” of home networking has emerged to allow the sharing of

files, printers, and Internet connections, and to enable networked PC games. The
second “Second Generation” of home networking will be based on wireless
technologies as communication media.

Compared to traditional networked environments, the home networking

environment is more heterogeneous because of different types of consumer devices /
appliances, manufactured by different vendors. In such scenarios, development of
applications to encompass all these devices, requires standard interaction models.

With myriad kinds of devices, the PDA software must be scalable and

substitutable enough to function with all the devices. We need standard interfaces,
which all the different devices can use to contact the PDA and vice-versa. We
therefore think that component software model is the best methodology to use to
implement such a system, which enables to build our system based on interfaces, with
which devices can interact.

We have identified dependability, extensibility, user-friendly interface, and

remote access capability as the four key requirements useful for successful home
networking. Dependability ensures that failure of hardware devices and software
objects will be detected, appropriate recovery of cleanup operation will be performed,
and homeowners will be alerted if necessary. Extensibility allows any new device to
be added at the ease of user and becomes available to all existing applications.
INTELHOMENET is based on wireless technology that operate on radio frequency,
hence, no extra wiring is required for addition of new device and it is plug-in type.
User-friendly interface allows users to control appliances.

We propose a Soft-State(context specific information) to be preserved by devices

and which will expire if not refreshed within a predetermined, but configurable
amount of time. Centralized Authority will periodically send keep-alive messages and
if a devices fails to receive beacon it will go to sleep mode.

Page 4 of 29

The paper is organized as follows. Section 2 identifies problems we set to solve
by this architecture. Here we explain our concept of a context. Section 3 describes the
design and overall architecture of INTELHOMENET. Section 4 describes how
component based design meets the requirement. Section 5 explains key interfaces with
relevant UML diagrams. Section 6 analysis interface reuse w.r.t our architecture.
Section 7 describes about reference implementation, and section 8 summarizes the
work and future work to be done in INTELHOMENET. The appendix contains UML
diagrams.

2 Problem Statement

We have identified 3 important problems to be overcome to implement our
architecture. They are
1. How to form a network of devices
2. How can different types of devices coexist
3. Who is the controller

We tackle each of these problems below.

2.1 How to form a network of devices?

The most important problem is how to form a network of devices. We could have
all the instances of all different types of devices under one network, or we could
separate out these devices depending on a criterion. The basic assumption of our
concept is that the behavior of the devices should change with the location of the user
and the time of the day. Having a single network for all the devices at home is not a
feasible solution if we consider that the access technology will be either
Bluetooth(802.15) or Wavelan(802.11) technologies, which rely on line of sight
communications. So, their range is limited to a room. This constrains us to form a
network of devices within a room. The configuration for the devices within a room is
called a context.

Solution : A context symbolizes any enclosed physical space like a room. The

constituents of a context are the appliances/devices present in the physical space
represented by the context. A context also maintains device specific information,
reflecting a physical device’s parameters, characteristics and behavior. The device
parameter values are user configured, to control the behavior of these devices, to suit
user’s preferences.

The type of devices, which we are dealing here are heaters, lighting, printers,

televisions, radio etc., which need to have different working states, depending on 2
factors.

They are
a. The presence of user.
b. The time of the day

Page 5 of 29

Some of the devices’ behavior are affected by both of these factors. They include
heaters, which needs to change their temperature settings when the user is the room or
away. Also, it is time dependent because when the user is asleep, the temperature is
normally lower than when he is awake.

Some devices are affected by the presence of user only. The devices include

printers, TV’s, VCR’s and other multimedia devices and independent from time.

The parameter values of the devices are therefore affected by these 2 factors, and

the context uses them as the basis of affecting a change in the devices’ parameters.
Since a context is configured by the user, it reflects his/her preferences.

Every physical space like a room is represented by a context. So, in a house for

example, there is more than one context.

2.2 How can different types of devices coexist ?

A home network contains numerous kinds of devices and we need to form a
network of these devices. Our architecture should be scalable enough to accommodate
different kinds of devices.

Solution : We propose that each device type be represented by a device driver.

The device driver needs to support a standard interface to work with
INTELHOMENET software and its implementation details are specific to the
component. Thus, substitutability and reusability is achieved.

2.3 Who is the controller ?

Solution : Since the context settings change with the presence of user and time, a
device which is close to the user most of the time is best suited to carry the settings.
The obvious choice is a mobile phone or a Personal Digital Assistant (PDA). This also
has the advantage that with the PDA not only can we control home appliances, but
also control devices outside a home, like the user’s office. So, this becomes scalable.

There is another reason for mobile devices to be the best choice of embedding the

software. Since mobile devices contain different applications and ability to interact
with the internet, the cellular network, there are tremendous opportunities of our
software to make use of these other applications. Also, having information about the
status of the devices, close to the user is always useful for him to take appropriate
actions.

In our architecture, we therefore assume that a mobile phone or a PDA is the

carrier of context.

Page 6 of 29

3 Architecture

3.1 Overview of Architecture

Our architecture is based on manager-agent and client-server paradigms. A device
driver residing in the PDA is a manager, while the agent is the software residing in the
devices. The manager initiates requests and commands, while the agent sends
responses and also sends notifications in case of special cases like faulty behavior etc.,

It is also a client-server architecture because the different software components

within the PDA provide services to others, while at the same time requiring services
from other software components.

The standard interfaces are

1. Communication interface
2. Database access interface
3. Command interface

Communication interfaces : The communication component supporting these

interfaces enable the PDA and the devices to communicate.
Database access interfaces : These set of interfaces provide the context and device

drivers access to context specific and device specific information stored in PDA’s.
Command interfaces : These interfaces delegate responsibility from the UI to

context to the device drivers.

3.1.1 Components

List of the components are:

1. Context
2. Device Drivers
3. Database handler
4. Timer
5. Locator
6. Communication
7. Device agents
8. User Interface module

3.1.2 Design Concept

Our architecture is based upon a context, context specific information and action
is initiated and controlled by the context component. It aggregates a set of device
drivers, delegating device specific responsibility to the concerned device driver. Since
it requires context specific information, it also needs the services of the database
handlers. Thus the context is a client for device drivers and the database interface.

Page 7 of 29

A device driver is an independent self containing software module, like a DLL. A

single device driver represents all instances of a single device type in a context. For
example, if there are 2 printers in a room, then one single printer device driver
suffices. If there are no instances of that device type, then the device driver is not
instantiated. A device driver requires information like the number of instances of the
device present in that particular context, the parameter values for each instance of the
device. It stores and retrieves this information from the database. Since a device driver
is also a manager over all its instances, it needs to communicate with its instances. It
uses the services of the Communication component for this purpose.

The Communication component contains a receiver and transmitter, basically

using the wireless interface. Some of the examples include bluetooth or 802.11
standards compatible devices. If it is bluetooth, then bluetooth chipsets are embedded
in both the PDA’s and the devices. If it is 802.11, wavelan cards need to be part of the
devices. Since bluetooth chipsets are much smaller and cheaper than the wavelan
cards, we propose that bluetooth provides the best communication interface

Other important components are the Database handler, Timers and Locators. The

database is some sort of permanent storage where context settings and device
parameters are stored. Timer provides stop clock functionality and it is used by the
devices, to activate new settings to devices. One instance of timer is required per
device driver. It is also used to periodically send keep alive messages to devices. They
serve 2 purposes. If keep alive messages are not coming, then it means that the user is
not around in that context. Therefore, it is better to change settings to default values,
which could require far less power consumption than otherwise. For example, if the
user is not around, then the heater temperature can be reduced. Also, it enables battery
operated devices if any to go to sleep mode.

Locator components in the PDA enable the context component to load new

contexts, depending on the location of the user. Locators could be voice detectors,
where the user will specify the name of the context(in our case the room) and it will
interrupt the context to load the new context. Alternatively, it could be a receiver like
device responding to sensors, which detects that a user has entered the room and then
it will interrupt the context to change the context.

4 Motivation for Component Object Model

4.1 Technological benefits of using Component Object Model

Home networking is dynamic in nature as new devices / appliances will be added
and they are manufactured by different vendors. COM offers enormous potential
advantages to software developers and end-users:

Page 8 of 29

x� Reusability: INTELHOMENET will be using the services of the Device driver
components, which are developed and tested by third party. This not only reduces
the development time but also results in higher quality product.

x� Efficiency: Applications do not duplicate functionality. Instead, they can present a
uniform user interface where new functionality can be added incrementally and
integrated smoothly into the familiar environment. This can reduce training costs
significantly while achieving a much higher level of satisfaction of the user. It is
important to mention here that user of the INTELHOMENET could be a naïve
computer user. With incremental update, the user can focus on what is new in the
system without worrying about changes of overall environment. It is very
important for customer confidence.

x� Contract: The physical implementation of a component is hidden, and only
accessed via, an interface. In this way, changes to the implementation of the
components are isolated from the application that uses it. It gives flexibility to
user to choose DLL’s (Device drivers) from a group of providers.

x� Versioning problem: COM’s approach to versioning is based on the following
three requirements: first, any interface (identified by an IID) must be immutable.
Second, a new implementation of the same CLSID must support existing
interface. Finally, any client must start interacting with a server by querying an
interface with an IID. Such a combination allows independent evolution of client
and server software.

Suppose, INTELHOMENET component is upgraded before the client is (for an
example device drivers component in PDA). The reason for this could be to add
more features due to fierce market competition. Since the new server supports all
the old interfaces, the old client can still obtain all the interface pointers that it
needs and run smoothly. When the client software is also upgraded, the new client
will query the new interfaces to enjoy the new features. In contrast, suppose the
client software is upgraded first. The new client will try querying the new
interfaces on the old server and fail. This procedure forces the new client to
handle the failure by, for example, providing only old features. But it will not
cause the new client to crash or unknowingly execute incorrectly.

4.2 Commercial benefits of Component Object Model

x� Low manufacturing cost: It is not mandatory for a Device Driver (Device
Component) to be manufactured by Original Equipment Manufacturer (OEM)
hence COM reduces dependability between service provider and user. This gives
freedom to negotiate with group of third party developers (who supports the
contract) to get a best deal, which in turn helps in low project cost.

Page 9 of 29

x� Freedom to choose a devices: Aforesaid feature also benefits end-user by
providing him/her competitive market for a device/appliance. It also gives
flexibility to choose a physical device OEM and device dll separately.

x� Addition of new devices: Suppose user is installing new printer and existing
PDA.EXE supports IPrinter interface then at no additional cost printer can
become part of existing network.

4.3 Drawback of Component Object model

We feel that it is new field and one major constraint of component technology
could be that very exerts are available for the development of maintenance of Project.

5 Key Interface and UML Diagrams

5.1 Details of interfaces

For higher level overview of various classes, interfaces and components please
refer Fig 1, 2 & 3.

5.1.1 Database

It has 2 interfaces:
1. IDirectoryDB
2. IFileDB

5.1.1.1 IDirectoryDB:
This interface is implemented by the Database component and used by the Context
component. The Context component uses this interface to get a listing of active
contexts or devices for the current context.

Methods supported are:
1. opendir([in] BSTR* pPathforContext,[out] int *fd)

 This method opens a directory under /context. /context is the root of the
 database.

2. closedir([in] int fd)
 This method closes the file descriptor.
3. readdir([in] int fd, [out] BSTR*buffer)
 This method will read the current directory listing and return into buffer.
4. adddir([in] int fd, [in] BSTR *pContextName)

Page 10 of 29

 This method adds a new context in the database. This context is still
 not configured
5. getActiveDevices([in] BSTR *pContextName)

 Given a context name, it retrieves the list of device types currently
 active under the context.

6. deleteDirectory([in] BSTR * pDirName)
 This method will delete a directory corresponding to a context.

5.1.1.2 IFileDB

This interface is used by the Driver components. It provides file operations like open,
read, write and close. This interface is used to read files containing the parameters for
each instance of a device type.

Methods supported are
a. open ([in] BSTR* pFileName, [in] int permissions,[out] int *pfd)

This method opens a file.
b. Read ([in] int fd, [out] BSTR*buffer)

This method reads the contents of a file into a local buffer.
c. Write ([in] int fd, [in] BSTR *buffer)

 This method writes new set of values for an instance. These values
 are set by the user either during configuration or using the Edit
 context option.

d. close([in] int fd)
This method closes an instance’s parameter file.

5.1.2 Context

This component contains 3 interfaces. These interfaces are callback interfaces, as
the UI, Locator and the Communicator components will invoke the context methods
asynchronously. The interfaces supported are :

1. IContext
2. IcommunicationContext

5.1.2.1 IContext:

Page 11 of 29

This interface is used by the UI component to invoke commands into the context.
It is also used by the Locator component.

Methods supported are

a. ActivateContext ([in] BSTR *pContextName)
 This method is called, when the user wants to activate a context. This method
 will retrieve the list of devices active for the context and will invoke
 activateContexts () method on the devices using IcontextDriver interface, refer
 Fig 4.

b. EditContext ([in] BSTR *pContextName)
 This method is called, when the user wants to edit a context. This method will
 call IcontextDB’s getActiveDevices() method to show to the user the list of
 devices present. Please refer Fig 9.

c. displayContexts()
This method is called, when the user wants to see a list of contexts currently
existing in the PDA. This method invokes IcontextDB’s readdir() method to
retrieve the list of contexts.

d. createContext()
This method is called when the user wants to create a new context. This method
will open a dialog box for the user to key in the context name. This inturn will use
the IcontextDB’s adddir() method to make an entry in the database. Please refer
Fig 5.

e. deleteContext([in] BSTR *pContextName)
This method will remove the entire directory corresponding to a context. Please
refer Fig 6.

5.1.2.2 IcommunicationContext

This interface is used by the Communication component as a callback interface, to
inform the context of any notifications, responses or new registration messages
coming from the devices. This interface will have to decode the message type and then
take suitable action. These methods delegate the functionality to the respective
devices. This interface implementation maps the device type in the message and
appropriately delegates to a device driver.

Methods supported are:
a. notification([in] BSTR *pdeviceType, [in] int deviceInstance, [in] BSTR *
pmessage)

This is a notification method indicating an error like FAULTY event occurred in
the device. The context will have map to the corresponding device and then
passes the message to notification method on IdeviceDriver() method. This is a
delegation. Please refer Fig 7.

Page 12 of 29

b. Registration([in] BSTR *pdeviceType, [in] BSTR manufacturerID, [in] int
yearOfManufacturing, [in] int productNumber, [in] int serviceContractNumber,
[in] BSTR * pYearofWarrantyExpiry)

This registers a new device. This is pending configuration, before it can be
activated. This will use the IfileDB methods to save this in a file named “system”,
under the device.

c. Response([in] BSTR *pdeviceType, [in] int deviceType, [in] BSTR
*pmessage)

This method is called as in response to a request sent by the device driver. It
delegates the functionality to response() method on IdeviceDriver, passing the
message.

5.1.3 Device Driver

This component represents a device. There is one instantiation of the DeviceDriver for
one type of device. It handles multiple instances of the device type. It contains the
following interfaces.

5.1.3.1 IdeviceDriver:

This interface is used by the context component. It implements the functionality
specific to a device type. It is the only component, which knows the parameter names and
values. Methods listed below, require the use of IFileDB interface. It has the following
method names

a. activateContext([in] BSTR *contextName)
A device driver represents all its instances. Each instance might have different settings

and it should send requests on each of them accordingly. We use the following procedure
to enable the device driver to manage multiple instances.

1. When an activate command is received from the context, it instantiates the
database component and uses the IDriverDB interface to load the context specific
information for that device.

2. It will load parameter settings for each instance containing parameter values for
different durations for one whole day.

For example, a heater instance will have the following settings.

Page 13 of 29

Device
Instance

Start
Time

(Hours)

End
Time

(Hours)

Temperature
(Fahrenheit)

1 0 6 60
1 6 9 75
1 9 18 50
1 18 24 75

3. It merges these settings for each instance and then sorts them on time. For 2
instances of heater in a single context, the merged settings is shown in the table
below.

Device

Instance
Start

Time
End

Time
Temperature

1 0 6 60
2 0 8 60
1 6 9 75
2 8 9 75
1 9 18 50
2 9 20 50
1 18 24 75
2 20 24 75

 The end time is not required and it is only shown for granularity

here.
4. Depending on the current time, it initializes to one of the entries above. From

then on, it follows the table entries accordingly.
5. It instantiates a timer, for the first time out. In our example, if the current time

is 19 hours, then the timer is set for 1 hour, after which it should set new
temperature values to timer 2.

b. editContext([in] BSTR *contextName)
This method is for the user to change a particular instance’s settings for a

context.
c. displayContext()

This method is used to display a list of active instances and their parameters
d. callbackforTimer()

This is a callback method called by the Timer when it times out. Apart from
using the timer for waking up the device driver to send new set of values to a
device, it is also used to periodically wake up the device driver to send keep alive
messages. Keep alive messages are sent by PDA’s because it is possible that some
of the appliances are battery operated and therefore if the user is not in the
context, they can go to sleep mode, thus saving power. Also, these devices are
woken up by the PDA’s again.

e. notification([in] int deviceInstance,[in] BSTR *message)

Page 14 of 29

This method is invoked by the Context component. This method will decode
the type of error from the message and will then change the database for that
instance. As an optimization, it can notify the user with an email!!! Please refer
Fig 7.

f. response([in] int deviceInstance, [in] *message)
This method handles a response from the device. It periodically retransmits a

request and if a response is not forthcoming. Once the response is received, it will
reset the timer.

5.1.4 Timer

5.1.4.1 ITimer:
A timer component is instantiated by each device driver. It has a single interface,

Itimer and device drivers register with this interface. ITimer contains notifyTimeOut
method, which will call the callbackforTimer method of IdeviceDriver.

5.1.5 Locator

5.1.5.1 ILocator

This component is used to indicate a change in location to the context component. It

has a single interface, Ilocator to which the context will register. Ilocator contains
notifyChangeContext method, which will invoke activateContext() method on the
Icontext interface of the context. Please refer fig 8.

5.1.6 Communication

This component constitutes a Receiver, transmitter, decoder and encoder. The receiver
will receive notifications, responses and registration messages in form of an encoded
form and it will decode the message and will then forward the requests to the context. In

Page 15 of 29

case of the transmitter, it will encode the messages sent by the Device drivers and will
transmit it over to the receiver on the other side.

6 Interface Reuse

We developed INTELHOMENET keeping in mind that it should be scalable and

reusable enough to work with myriad kinds of devices. It is always possible for user to
add new device any time in future. INTELHOMENET will be able work seamlessly
with different kind of devices as long as device driver supports IdeviceDriver
interface. Implementation of IdeviceDriver is device specific hence this interface hides
the actual implementation of it. This gives flexibility to user to dynamically configure
INTELHOMENET. We see polymorphism as IdeviceDriver interface is common but
implementation is different.

Timer component is generic and is used by all the device drivers for send keep

alive message as well as new attributes. We kept timer part out of device drivers as it
reduces the weight of it and we can use any third party component, this reduces the
time to develop our application.

Our design is not specific to underlying communication media, it can interoperate

with any other type of communication media as Ethernet or ADSL etc.

7 Reference Implementation

In our demo system, we will be demonstrating how an ACTIVATE command will
reflect a change in the PDA and the devices. Refer to fig on next page which shows
the sequence of operations occurring for an ACTIVATE command.

We also had the question of whether the Communication component should be

part of the INTELHOMENET EXE. But, we later realized that the access technology
need not be only Bluetooth, but also other standards like 802.11. So, we had to
separate out this component out from the INTELHOMENET exe.

DatabaseHandler

We explain below, how the context information is stored in a database. The

names of directories and filenames are important as illustrated below.

The database is some sort of permanent storage where context settings and device

parameters are stored. We assume the following directory structure. The root of the
tree is context,

Page 16 of 29

/context/

List of contexts are listed under the root like,
/context/room1
/context/livingroom

Under each context, different device types are listed, for example
/context/livingroom/heater
/context/livingroom/lighting
/context/livingroom/tv
/context/livingroom/vcr
/context/livingroom/lock etc.,

Under each device type, one directory for each instance is created.
/context/livingroom/heater/heater1

For each device instance, 2 files are present. They are the configuration file and

system file. A configuration file contains parameter values for different timings. A
system file contains the manufacturing details, warranty details of the instance. This
information is created during the registration period and is a reference for the user.
One optimization could be that once the warranty period expires, the user is
automatically intimated.

Therefore the leaf directory would have

/context/livingroom/heater/heater1/configuration
/context/livingroom/heater/heater1/system

Demo System

In our demo system, we will be demonstrating how an ACTIVATE command will

reflect a change in the PDA and the devices. Refer to Figure () which shows the
sequence of operations occurring for an ACTIVATE command.

We also had the question of whether the Communication component should be

part of the INTELHOMENET EXE. But, we later realized that the access technology
need not be only Bluetooth, but also other standards like 802.11. So, we had to
separate out this component out from the INTELHOMENET exe.

Proof of Demo and Architecture

Thinking in terms of implementation while developing the Proof of Demo,

resulting in quite a few changes in our basic design. The most important changes are
listed below.

Page 17 of 29

1. Since different devices have different parameter names and values, any exchange

of information between device drivers and other components like
Communication, Context or Database becomes a problem. To avoid the situation,
we make the attributes usable by the device drivers alone.

2. Exchange of attributes between the Device driver and the Database requires the
use of Tag Length Value(TLV) approach, so that we specify the name, type of
parameter along with the value. Different methods corresponding to different data
types are supported to handle all data types like integer and BSTR.

3. Exchange of attributes between the Device driver and the Communication

interface is again similar to TLV format. Also, this changed our architecture in the
sense that we now need to support overloading methods and also that any request
might require more than one transmission and reception, for each of the attribute
values.

4. Another change affected was for the databaseHandler component. We initially
had the database as a central repository merged with the context. But, we saw that
for database access by the devices, they need to forward requests to the context
and then back again. This was an overhead. Also, when multiple devices are

Page 18 of 29

active, then the context and therefore the single instance of the databaseHandler
will result in synchronization problems. To avoid this scenario, we made the
databaseHandler an independent component, being able to individually
instantiable by the context and the Device drivers.

The DeviceDriver’s as part of their initialization will instantiate a
databaseHandler and also a Timer component.

Here, we see that that every component is a DLL, giving us the advantage of easy
substitutability and polymorphism. This becomes an easy plug and play solution
to the problem of inter-component communication.

8 Conclusions and future work

We developed an architecture for an Intelligent Home Network. We named in
INTELHOMENET. We introduced a concept like context, to combine a set of devices
and then capable of controlling them with mobile devices like PDA’s or mobile
phones. We saw that we could build an architecture using the paradigms of Software
component model.

We did not consider security constrains in our architecture. For an example, since

remote automation scenarios involve the use of emails, the INTELHOMENET system
is susceptible to email server unavailability and email delivery latency. Fir example,
when “I LOVEYOU” computer virus/worm and its variants plagued the email system
around the globe, the homeowner can loose control to home devices for many hours.

 But, we think that only simple authentication mechanisms are required to
overcome any security problems. It is logical that these contexts would have to be
stored in more than one carrier(PDA). If there are more than one user in a house, then
all the users should be able to have a control over them. We could achieve this by
duplicating the contexts into multiple mobile devices, assuming that all users have
access to mobile phones.

 We also feel that PDA should be voice enabled means that it should be able to
recognize homeowners voice and parse it and then execute appropriate command
requested by the user.

9 Reference

www.bluetooth.org

Component Software Beyond Object-Oriented Programming by Clemens Szyperski,

Addison-Wesley 1999

Page 19 of 29

Page 20 of 29

Appendices

Diagrams

Deployment Diagram Fig 1

Class Diagram Fig 2

Class Diagram Fig 3

Sequence Diagram – Activate Context Fig 4

Sequence Diagram – Add new context Fig 5

Sequence Diagram – Delete Context Fig 6

Sequence Diagram – Device Notification Fig 7

Sequence Diagram – Locator based activate context Fig 8

Sequence Diagram – Configure the device to a context Fig 9

Page 21 of 29

Page 22 of 29

Page 23 of 29

Page 24 of 29

Page 25 of 29

Page 26 of 29

Page 27 of 29

Page 28 of 29

Page 29 of 29

