
1

Packet Filtering on the IXP1200 Network Processor
(Project Report)

Harkirat Singh, Kathryn Mohror, Dilip Sundarraj, Satyajit Grover, Gokul Huggahalli
Team 2

TCP/IP Internals, Spring 2003�
harkirat, kathryn, dilip, satyajit, huggahag � @cs.pdx.edu

I. REQUIREMENTS

To design filters to perform the following:
1) Layer 2 Filter: This filter should classify the packets as

Unicast, Multicast or Broadcast and maintain a counter
for each.

2) Layer 3 Filter: This filter should classify packets as TCP,
UDP, ICMP or OTHER and maintain a counter for each.

3) Complex Filter: This is a complex filter that classifies
packets as TCP and UDP on specific ports. The most
popular ports like 21, 22, 23, 80 etc. are considered and
hard-coded. A counter is maintained for each (protocol,
port) tuple.

4) Dynamic Filter: This filter performs complex filtering of
TCP and UDP packets based on the user requirements.
The user could specify the particular protocol, source
IP address, destination IP address, source port and
destination port whose packets s/he is interested in. This
filter can also look for virtual connections if all four
parameters are provided.

II. DESIGN

In this study we use two ACEs namely, Ingress ACE
and Filter ACE. Ingress ACE is the default implementation
provided with the Intel SDK. We have implemented a custom
Filter ACE.

Filter ACE has two components, micro and core. The
primary function of Filter microace is to increment counters
based on valid packets as per a set of rules. Some of these
rules are hard-coded and one is user defined in a startup
configuration file. The microace raises an exception and passes
along packets that match the user defined rule. The core
component runs on the SA processor. Its job is to periodically
poll the counters and display them accordingly. This poll time
is a user defined parameter in the IXP1200 configuration file.
In case it is not provided the polling time will default to a
hard-coded value. The core also handles the exception raised
by the microace when a packet matches the dynamic filter
described in the requirements.

The microblock components of both the Ingress and Filter
ACEs run on one microengine.

A. Life of the Packet

As soon as the packet is assembled in the SDRAM and
the rcv ready bit is set, the Ingress Ace gets the packet. The

Core Processor

Initial
Filter Configuration

Polling

Configuration

Microengine

Ingress microACE

Packet Filter microACE

Display

Resource Manager

Fig. 1. Filter architecture

Ingress Ace then hands the packet to our Filter Ace which
performs different checks on the packet by scanning its header.

The Layer 2 filtering is performed by examining the ethernet
header. The source and destination ethernet addresses are read
and compared to broadcast, multicast, and unicast address
families. According to the type of packet, the corresponding
counter is incremented. Following this, the Layer 3 filtering is
performed by scanning the IP header of the packet. The type of
the packet is determined as TCP, UDP, ICMP or OTHER and
the corresponding counter is incremented. The Complex filter
looks into the transport header that contains the port numbers
of the application that is the recipient of this packet. Separate
counters for each port for both TCP and UDP are maintained.

For the Dynamic Filter, the user inputs the protocol, source
IP address, destination IP address, source port and destination
port which need to be monitored for packets. Packets matching
this filter are sent to the core component in the SA through
the use of an exception. If the user specifies a 0 for any of
these four parameters we take it to mean any value for that
parameter. In that case, the four tuple is incomplete and cannot
be classified as a virtual connection. We can, however, match
packets based on that rule. On the other hand, if the entire four
tuple is specified, a counter is maintained for each direction
of the virtual connection. In both cases, the dynamic filter
specification is read from an external file by the initialization
code in the core component. The core component of our Filter
Ace then stores the filter parameters into a location in scratch-
pad memory in the structure shown in Figure 2. The micro
component of the ace reads this memory location for the



2

struct connection {
uint32_t type;
uint32_t src;
uint32_t dst;
uint32_t src_port;
uint32_t dst_port;

}

Fig. 2. Structure for holding dynamic filter

parameters and checks the header of the packet against these
values.

All the filters are programmed as a single microace that
executes the static filters on every execution. The choice on
whether to run the dynamic filter is based on the user’s
requirements. If the user configuration file does not specify a
TCP or UDP filter, the dynamic filter is not executed. Separate
counters are maintained for each and are incremented when a
matching packet is identified.

The counters that are maintained by the micro component
of the Filter ACE are accessible by the Strong Arm. The SA
periodically reads the values in each of the counters and dis-
plays them. The Strong Arm processor checks these counters
once every few seconds and displays them to the terminal.
The number of seconds can be provided as a parameter in the
IXP1200 configuration file.

III. DATA STRUCTURES

We have defined two data structures that would help us
maintain counters for different kinds of packets captured by
the different filters. The stats structure (Figure 3) contains
the different counters and it is accessible by both the core
component and the microblock component of our filter ace.

The stats structure was adopted from Andrew’s code and
modified. The counter field is used to maintain the counter for
the number of packets on the virtual connection between the
(source IP, source port) and (destination IP, destination port)
as specified by the user. The vc counter maintains the count
of packets going the other way on this virtual connection.
The user specifies the connection four-tuple using our dump
program that creates the connection structure as shown in
Figure 2. The connection structure has a type field to store the
type of protocol, which can be tcp or udp. The src, dst fields
are the source and destination IP addresses. The src port and
dst port are the source and destination ports. If any of these
fields are not specified explicitly then it means that the user
does not care about that particular field and it could take any
value. In order to achieve this, we set the default value of these
fields to be 0, in which case we do not compare for a match
on that particular field.

IV. ALGORITHM

According to our design architecture we have designed our
system to apply the Layer 2, Layer 3 and Complex filter for
all the packets that are being received on our interface 1 of
the IXP card.

typedef struct _stats {
uint32_t len;
struct bpf_insn instrns[25];

uint32_t counter;
uint32_t unmatched;
uint32_t type;
uint32_t bcast;
uint32_t mcast;
uint32_t ucast;
uint32_t icmp;
uint32_t tcp;
uint32_t udp;
uint32_t other;
uint32_t tcpssh;
uint32_t ipOptions;
uint32_t tcpftp;
uint32_t tcphttp;
uint32_t tcptelnet;
uint32_t udpdns;
uint32_t udprip;
uint32_t vc;
struct connection conn;

}stats_t;

Fig. 3. Structure for holding counters and an instance of the dynamic filter

1) We initially get a pointer to the packet that was currently
captured into one of the General Purpose Registers.

2) The MAC destination address is then extracted and
tested to see if it is a broadcast or multicast address.
For broadcast, we check if the address is 0xffffffff. If
so, we increment the broadcast and multicast counters
since broadcast is also a type of multicast. For multicast,
we check if the least significant bit of the first byte of the
MAC Destination address is 1. If it is, we increment the
multicast counter. If these tests fail then we increment
the unicast counter.

3) Next we check for the type of packet in the MAC header.
If it is an IP packet then we continue further processing;
otherwise we skip and process the next packet.

4) If we find that it is an IP packet then we extract the
header length from the header length field in the IP
header.

5) We check if the header length is greater than 20 bytes.
If it is, then the IP header has options and so we
increment a counter for packets received with IP options.
Then, we branch to the IpOptions section of the code,
where we extract source and destination ports from
the transport layer header at the appropriate offsets.
Otherwise, we extract them from the known locations,
i.e. fields following the IP header and in the beginning
of the transport layer header.

6) We compare the protocol type in the IP header protocol
field with ICMP, TCP or UDP. We increment the appro-
priate counters accordingly. If none of these match then
we increment the OTHER counter.

7) If we find the transport layer protocol is TCP or UDP



3

then we match it against the type member of the connec-
tion structure supplied by the user. If match is successful
then we set the conn filter flag and extract the IP source
and destination addresses from the IP header.

8) We also check for the popular TCP ports like SSH (22),
FTP (21), TELNET (23), HTTP (80) and UDP ports
like DNS (53), RIP (520). We increment the appropriate
counters in the stats structure.

9) Next, we check for the conn filter flag (as set in Step 7).
If it is set and none of the parameters of the connection is
0, then we need to trace the virtual connection. We have
separate counters for each direction of the connection. If
any parameter is set to 0 then by our design we do not
consider it a virtual connection. In this case we take it to
mean any value for that parameter. If the packet satisfies
the other non-zero given parameters we increment just
one counter. If both the cases fail then we increment the
Unmatched counter.

10) Finally, we send an exception to the core component of
the Filter Ace in case the packet matches our dynamic
filter and also pass the packet up to it. 1

V. IMPLEMENTATION AND RESULTS

We implemented the two components of our Filter ACE
as described in Section II. The core component was written
in C. The microace implementing our filtering algorithm was
implemented in IXP1200 microcode. Our design involved
the generation of exceptions for packets that matched our
dynamic filter. The SA core would then decide what needs
to be done with the exception raising packet. This feature was
implemented and was found to work. However, we observed
that when the traffic in the network for packets matching the
dynamic filter is high, our filter stops working due to the
sheer load of exceptions that are being generated. This could
be due to the SA’s inability to handle a very large number
of exceptions. We performed a number of tests on our code.
These test cases and their results are outlined in a separate
Test Plan document.

VI. ACKNOWLEDGEMENTS

We would like to thank the class TA, Andrew Jauri, for his
help with the IXP machines and the tutorials.

REFERENCES

[1] Intel, Intel IXA SDK Programming Framework. Intel Press.
[2] E. J. Johnson and A. R. Kunze, IXP-1200 Programming. Intel Press,

March 2002.
[3] G. R. R. Wright and W. R. Stevens, TCP/IP Illustrated: The Implemen-

tation, Vol. 2. Addison Wesley, October 1994.
[4] D. Comer, Network System Design Using Network Processors. Prentice

Hall, February 2003.

1This feature was implemented, but commented out. See Section V for
details.


