
Energy Consumption of TCP in Ad Hoc Networks� y

H. Singh, S. Saxena, and S. Singh
Department of Computer Science

Portland State University
Portland, OR 97207

ABSTRACT
In this paper we study the energy cost (protocol processing
and communication cost) and goodput of di�erent
avors of
TCP (Transmission Control Protocol) in ad hoc networks.
We implemented a testbed and measured the actual energy
cost as well as goodput of running TCP Reno, Newreno,
SACK (Selective ACKnowledgement) and a version that
combines Explicit Link Failure Noti�cation (ELFN) [7] and
Explicit Congestion Noti�cation (ECN) [5] in Newreno. We
see that the use of ECN & ELFN does yield higher good-
put in most cases with a corresponding lower total energy
cost. We see an energy savings of between 20% and 500%
depending on the network conditions.

Categories & Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques;
D.4.4 [Operating Systems]: Communications Management.

General Terms
Performance, Experimentation.

Keywords
Mobile, Protocol, TCP, Energy.

1. INTRODUCTION
In ad hoc networks, communication plays a signi�cant

role in the deployed applications and thus accounts for a
large proportion of the overall energy usage. Since energy is
the key constraint that determines the useful life of ad hoc
networks, it is important to reduce the communication en-
ergy cost. Various techniques have been proposed for reduc-
ing the communication energy cost including transmission

�This work was funded by DARPA under contract number
F33615-C-00-1633.
yResults presented here �rst appeared in MSWiM 2002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

power control, using directional antennas, adapting data
rates, MAC protocols that power the radio o�, and rout-
ing protocols that use energy-based routing metrics. While
all of these approaches clearly reduce the cost of communi-
cating we believe that additional savings are possible at the
TCP layer as well. In this paper we explore the energy cost
of TCP connections by comparing four variations of TCP
for reducing this cost.
The variants of TCP studied here are: Reno, Newreno,

SACK, and a hybrid developed by us called TCP-ECN-
ELFN. TCP-ECN-ELFN is based on previous proposals of
ECN [5] and ELFN [7] developed by other researchers. In
ELFN, the TCP timers at the sender are frozen in the event
of routing failure until the network layer informs TCP that
a new route has been found to the destination. ECN has
been proposed as a mechanism to enable TCP senders to
quickly respond to incipient congestion in the network. We
studied the performance of these variations of TCP in a
testbed. We measured the goodput of the protocols as well
as the total energy and idealized energy consumed for ttcp
data transfers. The idealized energy corresponds to the en-
ergy consumed by the sender when transmitting or receiv-
ing or processing but does not include the idle energy of
the node. We observe that under most ad hoc networking
scenarios, TCP-ECN-ELFN results in signi�cantly lower en-
ergy consumption as compared with TCP-SACK, Reno, and
Newreno, and it also has a higher goodput.
The remainder of the paper is organized as follows. In

the next section we discuss related work; section 3 develops
the energy model for characterizing protocol cost; section 4
presents a summary of the various TCP variants studied in-
cluding the details of ECN and ELFN that we incorporated
into TCP's implementation; we used a hybrid approach for
measuring TCP's energy and this is described in section 5;
results are presented in section 6.

2. RELATED WORK
There have only been a few papers dealing with the prob-

lem of TCP's energy consumption over wireless links. Some
of these papers propose link layer solutions while others com-
pare various versions of TCP with respect to the energy
cost. The link layer approaches include [8] who consider the
e�ect of ARQ, FEC and a combination of the two on en-
ergy consumed in ad hoc networks. Unlike our work here,
however, this paper was primarily concerned with link layer
schemes to improve TCP's energy behavior. [14] also con-
siders the e�ect of ARQ strategies on energy consumption.
The key idea is to suspend packet transmission when chan-

nel conditions worsen and probing the channel state prior
to packet transmission. When channel conditions improve,
packet transmission is resumed.
[12] compares the energy and throughput-eÆciency of TCP

error control strategies for three implementations of TCP
Tahoe, Reno, and New Reno. They implemented the three
versions of TCP using the x-kernel protocol framework and
their focus was to study heterogenous wired/wireless en-
vironments. [15] analyzes the energy consumption perfor-
mance of various versions of TCP for bulk data transfer in
an environment where channel errors are correlated. In-
terestingly, the energy cost is modeled as the ratio of the
number of successful transmissions to the total number of
transmissions. This paper does not consider processing or
other costs associated with running a higher layer protocol.
Furthermore, the paper only considers a one-hop wireless
link with zero propagation delay.
In the recent past there have been simulation based stud-

ies [16, 3] of throughput and energy performance of TCP in
wireless networks. These studies investigate the tradeo� of
radio Power on the throughput of TCP. [16] concludes that
increased trasmitted power is not always good as their study
shows that increased transmitted power results in higher
TCP throughput up to a breakpoint (because of better Sig-
nal to Interference Ratio), after which an increment of trans-
mitted power actually leads to worse performance due to
greater interference.
[1] studied the behavior of TCP over three di�erent rout-

ing protocols and they conclude that frequency of route fail-
ures, routing overhead, and delay in route establishment are
the primary determinants of TCP's performance. [2] pro-
posed a heuristic called �xed RTO (Retransmit Time Out)
to distinguish between route loss and network congestion.
In their implementation, the same RTO value is used for
consecutive timeouts because, they argue, losses are prob-
ably due to routing failure rather than congestion and in-
creasing the timeout values only degrades performance. Fi-
nally, [6] studies the relationship between the MAC layer and
TCP in multi-hop networks. They show that the interaction
between TCP and MAC (Medium Access Control) backo�
timers can cause severe unfairness. Furthermore, the in-
teraction between TCP data packets and ACKs can result
in very small congestion windows. Finally, they show how
these problems can be overcome by protocols that include
link layer ACKs.
Our study is di�erent in many ways, �rst while all the

previous studies were based on simulation, we measured en-
ergy using a wireless test-bed (3-hop ad hoc network) and
a real TCP/IP stack (FreeBSD); second, in all the previous
studies total energy is considered to be the primary metric.
Unfortunately, total energy includes the energy consumed
when the connection is idle and this can be the dominating
factor in computing this metric. We therefore also mea-
sured the actual protocol processing energy, which excludes
the connection idle periods.

3. ENERGY COST OF TCP
Figure 1 shows a simpli�ed view of the evolution, in time,

of the energy consumption of a TCP sender. In the �gure,
we plot the instantaneous current draw as a function of the
time. As we show in the �gure, the node consumes PIdle
amount of Power (watts) when idle (essentially waiting for
packets or ACKs), PTx Power in processing and transmitting

Time

C
u

rr
en

t

Idle Period

Packet Reception+Processing

Packet Processing+Transmission

P
idle

P
Tx

P Rx

Figure 1: Simpli�ed energy consumption pro�le.

TCP segments, and PRx Power in receiving and processing
TCP ACKs. Let ttotal; tTx, and tRx denote the total time
of the connection, the time spent by the node in processing
and transmitting packets, and the time spent in receiving
and processing ACKs. Then, the total energy consumed by
the TCP connection is1,

EA = PIdle(ttotal � tTx � tRx) + PTxtTx + PRxtRx
= PIdletIdle +ETx +ERx
= PIdletIdle +EI

(1)
Where EI denotes the energy consumed only for transmit-
ting/receiving packets and the associated processing cost. In
a sense, EI denotes the ideal energy consumed if the node
and the radio can be powered o� for exactly the duration of
the idle periods.
Next, assume that B bytes of data are sent during the

lifetime of the connection at an average throughput of �
bytes/sec. If the transmission speed of the radio is r bytes/sec,
we can write,

tIdle � B=� �B=r � (64B)=(2Dr) / 1=� (sec)

where D is the packet size used, B=r is the time to transmit
the packets, and (64B)=(2Dr) is the time to receive the
64-byte ACKs (assuming one ACK is sent for every two
packets). If we substitute 1=� for tIdle in equation 1, we
get,

EA / PIdle=� +EI / EIdle +EI (2)

As equation 2 shows, the total energy consumed by a TCP
connection is inversely proportional to the connection's through-
put and is proportional to the idealized energy EI . In equa-
tion 2, we treat EIdle as a constant but it is easy to see
that its value has a signi�cant impact on the measured total
energy EA. The value of EIdle depends on the behavior of
the node during periods when the node is idle. Typically,
laptops and PDAs enter a sleep state when they have been
idle for some period of time and wake up when an event
occurs. The energy consumed when the node sleeps versus
when it is idle but awake can be quite dramatic and can
make a signi�cant impact on any energy comparison.

4. OVERVIEW OF TCP VARIANTS

1The assumption here and in the remainder of the paper, is
that there are no other applications running over which the
energy cost can be amortized.

All the current TCP implementations are based on TCP
Tahoe that incorporated algorithms for slow-start, conges-
tion avoidance, fast retransmit. and modi�cations to the
formula for estimating round-trip times (RTT), see [11].
TCP Reno is essentially similar to Tahoe but with a mod-
i�ed fast retransmit algorithm that includes fast recovery
as well. When the sender receives three duplicate ACKs,
it retransmits one segment and reduces its ssthresh by half
(minimum of two segments). However, unlike Tahoe which
performs slow-start, Reno increases its congestion window
more rapidly by setting it to min(recvr window, CWND +
ndup). In other words, after retransmitting one segment
and reducing ssthresh by one half, Reno sets ndup to 3 and
increments it for every duplicate ACK received. When the
sender receives an ACK for new data, it exits fast recov-
ery by setting ndup to zero. It is easy to see that Reno's
fast recovery algorithm is optimized for single packet losses
from a window of data and will not perform well for multiple
losses. In this case the retransmit timer will go o� resulting
in congestion avoidance and very low throughput.
TCP Newreno tries to overcome the shortcomings of Reno

in the presence of bursty losses by using information con-
tained in partial ACKs di�erently. A partial ACK is an ACK
that acknowledges some but not all of the unacked packets
in the sender's window. In Reno, a partial ACK takes the
sender out of fast recovery. In Newreno, on the other hand,
a partial ACK received during fast recovery is taken as an
indication that the packet following the partial ACK was
lost and should be retransmitted. Thus, in the presence of
multiple losses from within a window, partial ACKs ensure
that the lost packets are retransmitted without waiting for
retransmit timers to go o�. Newreno only comes out of fast
recovery when all the packets that were in the window at
the time fast recovery started are acknowledged.
TCP SACK, built on top of Newreno, adds an additional

capability that allows faster recovery in the presence of mul-
tiple packet losses. When the receiver receives a block of
data which is out of sequence, that data creates a hole in
the receiver's bu�er. This causes the receiver to generate
a duplicate ACK for the segment preceding the hole. The
receiver also includes the starting and ending sequence num-
bers of the data that was received out of sequence. This
information is a SACK. The �rst block in a SACK option is
required to report the data receiver's most recently received
segment, and the additional SACK blocks repeat the most
recently reported SACK blocks. This algorithm generally
allows TCP to recover from multiple segment losses in a
window of data within one RTT of loss detection.
When a sender detects a lost packet (via three duplicate

ACKs), it retransmits one packet, cuts the congestion win-
dow by half, and enters fast recovery as in the case of Reno
and Newreno. SACK maintains a variable called pipe that
estimates the number of packets in
ight. It is incremented
for every transmission and is decremented when a duplicate
ACK is received containing a new SACK. The sender main-
tains a list of segments deemed to be missing (based on all
the SACKs received) and retransmits segments from this list
when pipe is less than CWND. Finally, when partial ACKs
are received, the sender decrements pipe by two rather than
one (see [4] for a discussion of why). SACK exits fast recov-
ery under the same conditions as Newreno.
Previous papers have compared the throughput of di�er-

ent versions of TCP. The results indicate that SACK has the

highest throughput for a large percentage of network condi-
tions. Based on equation (2), we can therefore predict that
SACK would consume the lowest total energy (EA). This
is borne out in our measurements as we discuss in section
6. The discussion of SACK makes it clear that the sender
needs to execute more code to maintain and use the SACK-
related data structures. We had assumed that this added
cost would be negligible. However, as section 6 shows, the
idealized energy cost EI of SACK is higher (and measurable)
than Reno and Newreno for many cases.

4.1 TCP-ECN-ELFN
Table 1 summarizes the changes made to the operation

of TCP to include ECN and ELFN. We note that our im-
plementation goes beyond simply adding ELFN and ECN
to TCP - we no longer treat timeouts and triple duplicate
ACKs as indications of congestion. Rather, we rely exclu-
sively on ECN to
ag network congestion. The table also
describes the intuition behind these changes.
Routing Failure: Using ELFN
[7] describes the interplay between routing failure (due

to link outage or propagation of stale routes) and TCP
throughput, in detail. Brie
y, successive route failures (due
to link failure) lead to timeouts hence resulting in a small
congestion window.. Hence, the throughput of the connec-
tion is small. The �x proposed in [7] and used by us is
as follows. A route failure message is propagated back to
the TCP sender from the intermediate node that detects
the route failure. This message has the e�ect of freezing
TCP's state and initiating the transmission of probe pack-
ets. When there is a response to the probe packet (i.e.,
the route is up), TCP's state is unfrozen and transmission
resumes. This solution ensures that there are no timeouts
(and hence no unnecessary retransmissions), and that the
TCP sender begins sending packets soon after the route is
up.
Out-of-order Packets, Timeouts, & Triple Duplicate ACKs
Mobility of nodes can cause packets belonging to the same

connection to be routed along di�erent routes. This can re-
sult in the receiver getting out-of-order packets which causes
duplicate ACKs to arrive at the sender. Likewise, packet loss
due to link-layer errors can result in triple duplicate ACKs
or timeouts. On receiving three duplicate ACKs, the sender
reduces its congestion window by a half and retransmits the
out-of-sequence packet while in the case of timeouts, the
window is reduced to one or two segments. This conges-
tion avoidance behavior has the net e�ect of reducing the
throughput of the connection (due to the smaller congestion
window) and thus increasing overall energy consumption.
We believe that the appropriate �x for this problem is for
the TCP sender to retransmit the o�ending packet but not
adjust its congestion window. We made this modi�cation to
TCP-ECN-ELFN in our implementation.
Network Congestion: Using ECN
A problem with our approach above is that if the triple

duplicates (or timeout) were generated as a result of packet
drops due to congestion, then the solution of simply retrans-
mitting the packet without reducing the congestion window
will have negative consequences (this is the reason why TCP
reduces its congestion window). In our design, we rely on
explicit congestion noti�cation [5] to signal imminent conges-
tion along a route2. Here, a node whose bu�er occupancy

2ECN has been proposed as RFC 2481 to the IETF and has

Event TCP's Behavior TCP-ECN-ELFN
Routing Failure Timeout, CWND 1 Freeze state

Retransmissions Probe network
Exponential backo� timer Unfreeze when route restored

Triple Duplicate (TD) ACKs Retransmit packet Retransmit packet
CWND CWND/2 + 3

Timeout CWND 1 Retransmit packet
Retransmit
Exponential backo� timer

Explicit Congestion Noti�cation No action CWND CWND/2

Table 1: Summary of changes made to TCP.

crosses some threshold, sets a bit (the CE bit) in all data
packets it sees. Receivers re
ect this
ag back in the ACKs
they generate by setting the ECN-ECHO bit. Upon receiv-
ing an ACK with the ECN-ECHO bit set, TCP senders enter
a recovery phase in which they reduce the congestion win-
dow by a half. The sender sets a CWR (Congestion Window
Reduced) bit in new data packets. If the receiver sees an-
other CE bit set in a future packet and sees that the sender
had sent a CWR bit, this indicates that there is still conges-
tion in the network. The receiver again sets the ECN-ECHO
bit in new ACKs thus forcing the sender to enter another
recovery phase. This can go on until the sender's window
has shrunk to one or two segments.

5. MEASURING ENERGY
Most of the research in ad hoc networking uses the ns2

simulator and to a lesser extent other simulators like glo-
mosim [13]) to run experiments. The bene�t of this ap-
proach is that researchers can build upon the work of oth-
ers and use a standard platform to check competing ideas.
While ns2 is a good tool for measuring traditional network-
ing metrics such as throughput, loss, and delay, it is ill-suited
to measure energy consumption of a protocol like TCP. This
is because the energy consumed includes not only the radio
costs (which are modeled to some extent in ns2) but the
node-level protocol processing and data copy costs. An al-
ternative idea would be to use a node-level energy simula-
tor/emulator that gives fairly accurate energy readings for
processing code. The problem, however, is that these tools
do not simulate the ad hoc network environment. Thus, an
idealized simulator would be one which combined a detailed
node-level emulator and ns2. However, we are not aware of
any such simulator that we could have used.
Given the above constraints, we decided to use a hybrid

approach to measure the node-level TCP energy. Specif-
ically, we used a 4-node network (see Figure 3) in which
we measured the energy of the sender node directly using
two Agilent 34401A multimetes (resolution of 1msec) { one
measured the total system energy while the second mea-
sured the radio-level energy alone (Figure 2 shows a sample
data trace). We also ensured that there is no other traÆc
was present on the channel. Each node in the network is a
Toshiba laptop that has a Lucent 802.11 Silver (11 Mbps)
WaveLAN DSSS PC card. Further, the two intermediate
nodes are set up to act as routers. To simulate multi-hop
ad hoc network behavior, we ran Dummynet [10] at node C.
Dummynet is a freely available kernel-level patch that allows
us to control a wide-variety of network behaviors such as de-

been put forward as a Proposed Standard for use over the
Internet.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500
Total Energy Consumed and Energy Consumed by the Radio

Time (msec)

C
ur

re
nt

 (
m

A
)

Total measured energy

Simultaneous measurement of
energy consumed by the radio

Figure 2: Sample energy trace: note simultaneous
measurement of radio and system-level energy cost.

lay, loss, and bandwidth. For instance, Dummynet can add
delays to packets to simulate variable RTT, drop packets
to simulate lossy networks, vary the bandwidth, and imple-
ment di�erent queuing mechanisms3. We ran Dummynet
with a setting of HZ = 1000, a kernel option that gives us
a time granularity of 1msec. We also implemented RED
(Random Early Detection) for AQM (Active Queue Man-
agement) to detect and report incipient congestion in order
to implement ECN. All of the implementation was done in
FreeBSD. Ad hoc mode of these WaveLAN PC cards do not
allow Transmit Power control or explicit data rate control,
and hence we did not not investigate the impact of these on
TCP throughput.

Sender Receiver

Implements
periodic network
congestion and
route failure

Implements variable
RTT, loss, and
bandwidth via
Dummynet

All nodes are laptops with 802.11b 11Mbps cards.

Measured system

A

B C

D

Figure 3: Measurement setup.

3The overhead of running Dummynet on network parame-
ters like RTT etc., is negligible because Dummynet does not
perform data copies, it works with pointers only.

6. EXPERIMENTAL RESULTS
Since our ad hoc network is emulated as in Figure 3, we

needed to feed appropriate values for various parameters
such as bandwidth, loss probability, and RTT range into
Dummynet. In addition, we needed to generate out-of-order
packets and congestion scenarios to model similar scenarios
in ns2-based simulations. To this end, we conducted sim-
ulations in ns2 and used the results of others to determine
appropriate values for these various parameters. The �nal
selection of parameter values was somewhat optimistic but
seemed to cover a wide range of ad hoc network behavior.
These values are summarized in Tables 2 and 3.
All experiments were conducted at least ten times and we

computed 95% con�dence intervals (which are also shown
in the �gures). Furthermore, in order to get statistically
signi�cant results, we transmitted 5M of data (TTCP
ow)
for each run (transmitting smaller amounts of data resulted
in high measurement error due to the 1msec granularity of
the multimeter). We measured EA, EI , and goodput for the
connections. One note about the �gures. We normalize the
total energy measured (EI or EA) by the data transferred
and plot the energy in units of micro-Joules per bit. The
x-axis in all plots is the average RTT value.
The remainder of this section is broken in three: in section

6.1 we look at the impact of mobility-induced factors on
protocol performance; in section 6.2 we consider the relative
protocol performance when nodes do not move; �nally, we
summarize the main results in section 6.

6.1 Mobile ad hoc network case: impact of mo-
bility

6.1.1 Routing Failure Case
We simulated routing failure by breaking the route for 5

seconds after every 15 seconds during the run. This was
done for the three packet loss probabilities of 1%, 5%, and
10% and for all the di�erent RTT ranges. Figure 4 plots
the energy EI and EA for di�erent RTTs. We have left out
the 5% loss case from the energy graphs for clarity. We also
left out the plots for Reno and Newreno because their per-
formance falls far below that of the other two variants. We
see that the TCP-ECN-ELFN protocol outperforms TCP-
SACK on all measured metrics because of two reasons:

� Due to route failure, TCP-SACK has a very poor through-
put (and goodput) due to many timeouts. In the TCP-
ECN-ELFN protocol, on the other hand, an ICMP
route failure packet has the e�ect of freezing TCP state
and resuming it when the route is up. Thus, the good-
put and energy EA of the TCP-ECN-ELFN are better
than TCP-SACK.

� TCP-SACK having no mechanism of detecting route
failure ends up retransmitting many packets and it has
to do extra processing in maintaining SACK blocks
thus has a higher idealized enrgy cost EI as well. Fur-
ther, this cost of maintaing SACK blocks becomes
signi�cant at higher losses. TCP-ECN-ELFN on the
other hand will send a zero window probes in freeze
state.

� At a 10% loss, the idealized energy for TCP-SACK is
2.5x greater than that for TCP-ECN-ELFN and the
awake energy is 5x greater! However, at a 1% loss, the
di�erence is quite small.

Total transmissions MTU 512 MTU 1500
1% 5% 1% 5%

TCP-SACK 11142 11149 3607 3608
TCP-ECN-ELFN 11173 11181 3614 3647

Table 4: Number of transmissions for the reorder
case.

It is interesting to note that there is an order of magnitude
di�erence between EI and EA values for both protocols (we
considered the cost of freezing TCP state and sending zero
window probes in TCP-ECN-ELFN). This is because EA
includes the idle energy while EI does not and, in this case,
the idle energy (and idle time) are quite large because of
route failure. We note that Awake Energy and goodput are
inversly related. However, we note a contradition in Figure
4 at rtt 100msec and 130 msec. At rtt 100 msec TCP-SACK
has higher Goodput but it also has a higher Awake Energy.
The reason for this is that at rtt 100 msec the number of
timeouts are relatively fewer (23) and TCP-SACKmainatins
a higher cwnd and processes more SACK blocks (39), hence
it achieves a higher goodput, however, the cost of processing
these SACK blocks contributes to the higher energy cost.
At rtt 130 msec TCP-SACK has more timeouts and has
less SACK processing because in the event of timeouts, all
SACK blocks are discarded. Further, due to invocaction
of slow start in quick succession it achieves lower goodput.
Finally, note that packet loss has a non-trivial impact on
the performance of the di�erent protocols. We examine the
e�ect of loss in detail in section 6.2.1.

6.1.2 Packet Reorder Case
Dummynet was con�gured to reorder 1% and 5% packets

randomly in its bu�er. In Figures 5 and 6 we plot the ide-
alized and awake energies consumed by all four variants of
TCP. In general we note that Reno has the highest idealized
as well as awake energy consumption followed by Newreno
(for both MTU sizes). SACK performs better than Reno
and Newreno because when the sender receives three dupli-
cate ACKs (that also contain information about holes in the
receiver's bu�er), the sender retransmits one segment and
then retransmits the segments that corresponded to holes in
the receiver's bu�er as and when pipe is less than CWND.
Newreno, on the other hand, sequentially retransmits seg-
ments on receipt of partial ACKs. This results in some
packets not being retransmitted early enough and we get
timeout events. In our experiments, we noted that SACK
never had any timeouts for the reorder experiments while
both Reno and Newreno had timeout events (Reno more
than Newreno).
Let us next compare the relative behaviors of TCP-SACK

and TCP-ECN-ELFN. In the 1% case, we note that TCP-
SACK has a lower idealized energy cost (at lower RTTs)
than the TCP-ECN-ELFN protocol. This is due to the fact
that the TCP-ECN-ELFN protocol retransmits4 more pack-
ets than TCP-SACK (see Table 4). Interestingly, at a 5%
reorder rate, we see that TCP-SACK has a higher idealized
energy than the TCP-ECN-ELFN protocol even though it
retransmits fewer packets! The explanation is that the ad-
ditional reception and processing cost of SACKs becomes
appreciable at the 5% reorder level and thus increases the

4We used tcpdump and netstat before and after each run to
gather these statistics.

Parameter Values Comments
RTT 10-20ms, 30-50ms, 60-80ms, For a given experiment, we use one of the

90-110ms, 120-140ms RTT ranges; each packet had a RTT randomly
uniformly selected from this range

MTU size 512 and 1500 bytes These extreme values explore
the dependence of energy on MTU size

RTS/CTS ON or OFF We performed experiments with both cases
but show graphs for the OFF case only
(the ON case was similar)

Protocols studied Reno, Newreno,
SACK and ECN-ELFN SACK implemented in FreeBSD4.3 based on RFC2018;

the TCP-ECN-ELFN also implemented in FreeBSD4.3

Table 2: Experimental parameters for all experiments.

Experimental Factors Values Comments
Mobile ad hoc networks

Route failure Route down for 5 sec every 15 sec These values are very optimistic and were
selected because even at these values TCP's
energy cost is signi�cantly higher
than the cost of the TCP-ECN-ELFN protocol

Packet reordering 1% and 5% packets reordered Packets as well as ACKs reordered randomly;
these values are dependent on the routing
protocol and could be higher

Static ad hoc networks
End-to-end Packet Loss 1%, 5%, 10% This range is somewhat optimistic and

ignores some high loss cases
Bursty loss 85% loss for 1 sec every 12 sec Models the case when the route fails at

a node that has a bu�er full of packets
Congestion Router B congested Two RTTs used:15 ms and 130 ms; this

for 5 sec every 30 sec case shows that the TCP-ECN-ELFN protocol
reacts correctly to congestion

Table 3: Summary of ad hoc network conditions studied.

EI value ([9] also contemplates the additional cost of us-
ing SACK). SACK is a TCP option in which the receiver
can specify up to three blocks of out-of-order data it has
received. Each block is speci�ed by the starting and ending
32-bit sequence number. Thus, specifying each block con-
sumes eight bytes. In the case of a 5% packet reordering,
the number of duplicate ACKs is larger and each duplicate
ACK will contain a SACK that can contribute between ten
and twenty four bytes of additional information. The sender
also needs to maintain additional data structures to pro-
cess SACKs. The cost of receiving more data coupled with
the cost of processing and storing SACK data structures
increases the overall idealized energy cost for TCP-SACK.
The TCP-ECN-ELFN protocol has none of this overhead
and thus has a lower idealized energy cost. In the 1% re-
order case, the number of duplicate ACKs is much smaller
and hence the SACK overhead is minimal.
Returning to the 1% reorder case, the SACK-associated

cost is not signi�cant here because of two reasons. First,
the number of duplicate ACKs is much smaller than the
5% case (thus, the receiving and processing cost of SACK
is much smaller). Second, SACK clears its data structures
when it receives an in sequence ACK. In the 1% reorder case,
the the probability that more than one packet was out-of-
order (in a window) at the receiver is small and hence when
it is ACK'ed, the SACK data structures can be cleared.
In the 5% reorder case, on the other hand, more than one
packet can be out of order within a window and thus the
SACK data structures (indicating received blocks) need to
be maintained for longer times.

6.2 Static ad hoc network case: impact of loss

6.2.1 Random Packet Loss Case
One of the primary contributors to lowered protocol per-

formance in static ad hoc networks is packet loss resulting
from link-layer errors and congestion. In order to study the
impact of packet loss on protocol behavior, we used three
values for packet loss (1%, 5%, and 10%), for the �ve values
for RTT and two di�erent MTU values (see Table 2). Figure
7 plots the idealized energy cost EI as a function of RTT
for both MTU values (1% and 10% loss); Figure 8 plots the
awake energy cost EA and Figure 9 plots the goodput. We
can make the following observations:

� In general, smaller MTUs are better (i.e., consume less
energy EI and EA) at higher loss rates whereas larger
MTUs are better at low loss rates. This observation
has been made by several previous researchers when
throughput was the metric studied.

� If we only look at the idealized energy consumption
(Figure 7), then we see clearly that either Reno or
Newreno are the best performing protocol with the
appropriate MTU size. This is because, unlike TCP-
SACK, Reno and Newreno do not incur the extra pro-
cessing overhead and unlike TCP-ECN-ELFN, they do
not needlessly retransmit packets.

At a loss of 1%, the idealized energy of the TCP-ECN-
ELFN protocol is higher than that of TCP-SACK,
Reno and Newreno. The reason for this is that the
TCP-ECN-ELFN protocol actually retransmits many

more packets than the other protocols. This is because
if a packet is lost, on receipt of triple duplicate ACKs
the TCP-ECN-ELFN protocol retransmits that packet
but does not shrink its congestion window. Thus, it is
sometimes the case (when the sender has a lot of data
to send) that the same packet may receive another set
of triple duplicate ACKs (sent in response to new pack-
ets arriving at the receiver) thus prompting a second
(unnecessary) retransmission. TCP-SACK, Reno, and
Newreno, on the other hand, shrink their congestion
windows on receipt of triple duplicate ACKs. This re-
duces the probability of receiving a new set of triple
duplicate ACKs for the same packet (and hence we
avoid an unnecessary second retransmission). Table 5
summarizes the total number of transmissions for the
TCP-SACK and TCP-ECN-ELFN (averaged over all
RTTs). As we can see, for a MTU of 1500, the TCP-
ECN-ELFN protocol transmits 425 more packets than
TCP-SACK.

� At a loss of 10%, we note that the TCP-ECN-ELFN
protocol still transmits more packets than TCP-SACK
but it has a lower idealized energy cost. The reason
for this dichotomy is the dependence of energy cost on
the both the transmission/reception cost as well as on
the processing cost. At a 10% loss rate, TCP-SACK
will see a large number of duplicate ACKs containing
SACKs for blocks received out-of-order. As we dis-
cussed in section 6.1.2, the added cost of processing,
storing, and receiving these SACKs is non-trivial and
accounts for the higher idealized energy EI value for
TCP-SACK. At a 1% loss rate, however, the number
of SACKs is signi�cantly smaller and the energy asso-
ciated with SACK processing is not statistically signif-
icant and thus does not a�ect the relative values of EI
for TCP-SACK and the TCP-ECN-ELFN protocol.

� Consider Figure 8 where we plot the awake energy EA
costs. Here, we see that TCP-ECN-ELFN is the win-
ner in both loss cases and it consumed the least amount
of energy. The reason for this (in contrast to its per-
formance with respect to the EI metric) is that by
retransmitting more packets, ECN-ELFN maintains a
much higher goodput (see Figure 9) and thus the data
transmission concludes earlier. The other protocols
take longer to send the data and the idle energy costs
begin to dominate the total awake energy cost.

� For the 1% loss case with a MTU of 512 bytes, TCP-
SACK has a higher goodput than the TCP-ECN-ELFN
protocol for cases when the RTT< 100 ms. The reason
the goodput of TCP-SACK is higher for these cases is
two-fold: �rst, the TCP-ECN-ELFN protocol has a
higher number of retransmissions (for the reason ex-
plained earlier) and second, TCP-SACK can recover
from multiple losses occurring in a window within one
RTT thus maintaining its throughut.

However, at a high RTT (e.g., 100ms), we see that the
goodput of the TCP-ECN-ELFN protocol overtakes
that of TCP-SACK. This is because the TCP-ECN-
ELFN protocol does not shrink its congestion window
on receipt of triple duplicate ACKs (as TCP-SACK
does) thus it maintains a high throughput. At a low

Total transmissions MTU 512 MTU 1500
(Timeouts) 1% 10% 1% 10%
TCP-SACK 11004 11538 3642 4111

(0.51) (104) (0.64) (340)
TCP-ECN-ELFN 11661 14150 4067 5551

(0.52) (6.48) (0.16) (40)

Table 5: Number of transmissions (and timeouts)
for the loss case.

RTT, TCP-SACK is able to quickly build up its con-
gestion window to maintain high throughput but at
high RTT this process takes much longer and we there-
fore see the TCP-ECN-ELFN protocol pulling ahead!
For an MTU of 1500 bytes the trend is the same for
identical reasons. However, the crossover point occurs
at lower RTTs due to the larger MTU.

� For the 10% loss case, the TCP-ECN-ELFN protocol
has a higher goodput (and thus a lower EA) as com-
pared with TCP-SACK because, unlike TCP-SACK,
the TCP-ECN-ELFN protocol does not reduce its con-
gestion window on receipt of triple duplicate ACKs or
timeouts. At a loss probability of 10%, we see multi-
ple losses within a window due to which TCP-SACK's
congestion window does not grow much thus keeping
the goodput small.

6.2.2 Bursty Loss Case
Figure 10 plots the energy and gooodput for the bursty

loss case. First, comparing Reno, Newreno, and SACK, we
see that SACK has the lowest awake energy while Newreno
has the lowest ideal energy (Reno has the highest energy
cost). The reason for this di�erence in Newreno and SACK
is that in the case of a bursty loss, Newreno will retransmit
lost packets without waiting for the retransmit timers to go
o� (based on partial ACKs received). SACK, likewise will
retransmit these packets as well (as indicated by the SACKs)
but it also has the added overhead of maintaining SACK-
related data. This additional cost results in SACK having a
higher idealized energy cost even though its goodput is the
highest.
If we compare TCP-SACK and TCP-ECN-ELFN, we note

that ECN-ELFN has a lower EI as well as a lower EA. The
reason is that while both protocols retransmit missing pack-
ets when the sender receives triple duplicate ACKs, ECN-
ELFN does not shrink its congestion window while SACK
does. Thus, the goodput of the TCP-ECN-ELFN protocol
is higher and its awake energy EA & idealized energy EI are
lower than that of TCP-SACK. Interestingly, as shown in
Figure 10, the idealized energy EI for the TCP-ECN-ELFN
protocol is quite close to that of the awake energy. This is
due to the fact that in these experiments the only loss suf-
fered was due to bursty loss (i.e., no random packet loss was
simulated) and there was no network congestion or route
failure. Thus, the TCP-ECN-ELFN protocol operated at
the maximum possible rate resulting in minimal idle time.
This causes the values of EA and EI to be quite close. In
the case of TCP-SACK, on the other hand, the congestion
window shrinks every time there is a triple duplicate ACK
or timeout that causes the goodput and EA to fall. Thus,
there is a larger di�erence between the idealized and awake
energy for TCP-SACK. Overall, we see a 2x improvement

Ntwk condition Lower EI Higher Goodput
Mobile ad hoc networks

Route failure ECN-ELFN ECN-ELFN

Pkt reordering ECN-ELFN ECN-ELFN
Static ad hoc networks

Packet Loss Newreno ECN-ELFN

Bursty loss ECN-ELFN ECN-ELFN

Congestion ECN-ELFN ECN-ELFN

Table 6: Summary of results.

in EA when using ECN-ELFN and a 10 { 25% improvement
in EI .

6.2.3 Congestion Case
In this set of experiments we wanted to investigate the

e�ects of congestion on TCP-ECN-ELFN and TCP-SACK.
Using packet traces we observed that TCP-ECN-ELFN did
indeed respond to congestion appropriately, the sender re-
duced its congestion window in response to one or more
ECNs and build up its congestion window when it no longer
received the ECNs. In this section we examine the energy
consumed by the two protocols under study for the case
when congestion occurs every 30 seconds and lasts for 5
seconds. We ran the experiments for two cases when the
average RTT was 15 msec and 130 msec. For each of these
RTT values we had background packet loss of 1%, 5%, and
10%.
Figure 11 plots the idealized and awake energy consumed

by the two protocols. It is interesting to observe that the
idealized energy consumed is the same for the two RTT val-
ues for TCP-SACK and for the TCP-ECN-ELFN protocol
with an RTT of 130 msec. However, the idealized energy
for the TCP-ECN-ELFN protocol at an RTT of 15 msec is
the smallest by far. In the case of TCP-SACK, the periodic
congestion coupled with packet loss ensures that its conges-
tion window is always small (for both RTTs) and thus the
idealized energy consumed is almost the same (i.e., on the
average the same number of SACKs are processed and the
same number of packets are retransmitted). In the case of
the TCP-ECN-ELFN protocol, however, the idealized en-
ergy is higher for the larger RTT case because the proto-
col mistakenly retransmits more packets at a higher RTT.
Recall from our discussion in section 6.2.1 that the TCP-
ECN-ELFN protocol may retransmit the same packet more
than once because it may receive multiple cases of triple du-
plicate ACKs { the probability of this happening is higher
at a larger RTT.

7. CONCLUSIONS
In this paper we have characterized the energy cost of

TCP Reno, Newreno, SACK and a modi�ed version of TCP
(ECN-ELFN) that appears to be better suited for operation
in ad hoc networks. The TCP-ECN-ELFN protocol relies
on explicit routing failure noti�cations to freeze TCP state
allowing faster recovery when the route is back up. In ad-
dition, it uses ECN to respond to network congestion. We
showed that the TCP-ECN-ELFN protocol uses less energy
and delivers a higher goodput as compared with the other
three TCP variants in all cases but one where Newreno per-
forms better (see Table 6). One of the areas of concern in

using the TCP-ECN-ELFN protocol, however, is the issue
of fairness. That is, will this protocol share bandwidth fairly
between multiple connections? This question is fairly com-
plex and is presently being studied in a ns2 simulation.

Acknowledgements
We would like to thank Jim Binkley for his technical support
in implementing our testbed, L. Rizzo for technical support
on Dummynet, and the FreeBSD community for technical
support during our implementation of SACK in FreeBSD
4.3.

8. REFERENCES
[1] Ashish Ahuja, Sulabh Agarwal, Jatinder Pal Singh,

and Rajeev Shorey. Performance of tcp over di�erent
routing protocols in mobile ad-hoc networks. In IEEE
Vehicular Technology Conference (VTC 2000), Tokyo,
Japan, May 2000.

[2] Thomas D. Dyer and Rajendra V. Boppana. A
comparison of tcp performance over three routing
protocols for mobile ad hoc networks. In ACM
Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC), October 2001.

[3] Sorav Bansal et.al. Energy eÆciency and throughput
for tcp traÆc in multi-hop wireless networks. In
Proceedings INFOCOM 2002, New York, NY, 2002.

[4] K. Fall and S. Floyd. Simulation-based comparison of
tahoe, reno, and sack tcp. ACM Computer
Communications Review, 26(3):5 { 21, July 1996.

[5] S. Floyd. TCP and explicit congestion noti�cation.
ACM Computer Communication Review, 24(5):10{23,
1994.

[6] M. Gerla, K. Tang, and R. Bagrodia. Tcp performance
in wireless multi-hop networks. In IEEE WMCSA'99,
(New Orleans, LA), Feb. 1999.

[7] Gavin Holland and Nitin H. Vaidya. Analysis of TCP
performance over mobile ad hoc networks. In ACM
Mobile Computing and Networking (MOBICOM'99),
pages 219{230, 1999.

[8] M. Srivastava P. Lettieri, C. Schurgers. Adaptive link
layer strategies for energy eÆcient wireless
networking. In Wireless Networks, volume 5, pages
339 { 355, 1999.

[9] L. Rizzo. Issues in the implementation of selective
acknowledgements for tcp, 1996.

[10] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM Computer
Communication Review, 27(1), January 1997.

[11] W. Richard Stevens. TCP/IP Illustrated, Volume I:
The Protocols. Addison Wesley, 1994.

[12] V. Tsaoussidis, H. Badr, X. Ge, and K. Pentikousis.
Energy/throughput tradeo�s of tcp error control
strategies. In In Proceedings of the 5th IEEE
Symposium on Computers and Communications,
France, July 2000.

[13] Xiang Zeng, Rajive Bagrodia, and Mario Gerla.
Glomosim: a library for parallel simulation of
large-scale wireless networks. In Proceedings of the
12th Workshop on Parallel and Distributed
Simulations { PADS '98, May 26-29 1998.

[14] M. Zorzi and R.R. Rao. Error control and energy
consumption in communications for nomadic
computing. In IEEE Transactions on Computers,
March 1997.

[15] M. Zorzi and R.R. Rao. Is tcp energy eÆcient? In
Proceedings IEEE MoMuC, November 1999.

[16] M. Zorzi, M. Rossi, and G. Mazzini. Throughput and
energy performance of tcp on a wideband cdma air
interface. In Journal of Wireless Communications and
Mobile Computing, Wiley 2002, 2002.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Idealized Energy Consumption : Disconnected, MTU 1500, RTS/CTS OFF

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

TCP−ECN−ELFN 1% Loss
TCP−SACK 1% Loss
TCP−ECN−ELFN 10% Loss
TCP−SACK 10% Loss

1% Loss

10% Loss

TCP−ECN−ELFN

TCP−SACK

TCP−SACK

 TCP−ECN−ELFN

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200
Awake Energy Consumption : Disconnected, MTU 1500, RTS/CTS OFF

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

TCP−ECN−ELFN 1% Loss
TCP−SACK 1% Loss
TCP−ECN−ELFN 10% Loss
TCP−SACK 10% Loss

TCP−ECN−ELFN

10% Loss

TCP−SACK

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400
Goodput : Disconnected, MTU 1500, RTS/CTS OFF

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

TCP−ECN−ELFN 1% Loss
TCP−SACK 1% Loss
TCP−ECN−ELFN 5% Loss
TCP−SACK 5% Loss
TCP−ECN−ELFN 10% Loss
TCP−SACK 10% Loss

TCP−ECN−ELFN

1%

 5%

 10%

TCP−SACK 1%

 5%
10%

Figure 4: Idealized and awake energy cost for the
route failure case.

0 20 40 60 80 100 120 140
−20

−10

0

10

20

30

40
Idealized Energy Consumption: 1% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

RENO512

ELFN−ECN (both)

NEWRENO512

RENO1500

NEWRENO1500

0 20 40 60 80 100 120 140
10

20

30

40

50

60

70

80

90

100
Awake Energy Consumption: 1% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

Figure 5: Idealized and awake energy for 1% packet
reordering.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80
Idealized Energy Consumption: 5% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

RENO512

ELFN−ECN1500

NEWRENO1500

ELFN−ECN512

SACK

0 20 40 60 80 100 120 140
0

50

100

150

200

250
Awake Energy Consumption: 5% Packet reorder, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

Figure 6: Idealized and awake energy for 5% packet
reordering.

0 20 40 60 80 100 120 140
10

15

20

25

30

35

40
Idealized Energy Consumption: 1% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

ELFN−ECN

512

1500

RENO512

NEWRENO1500

512

1500

0 20 40 60 80 100 120 140
20

40

60

80

100

120

140

160
Idealized Energy Consumption: 10% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

NEWRENO512

SACK1500

ELFN−ECN512

ELFN−ECN1500

RENO512

NEWRENO1500

RENO1500

SACK512

Figure 7: Idealized energy cost for loss case.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60
Awake Energy Consumption : 1% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

ELFN−ECN1500

ELFN−ECN512

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600
Awake Energy Consumption: 10% Packet Loss, RTS/CTS off

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

ELFN−ECN (both)

SACK1500

RENO1500

NEWRENO1500

Figure 8: Awake energy cost for loss case.

0 20 40 60 80 100 120 140
200

400

600

800

1000

1200

1400

1600
1% Packet Loss, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

ELFN−ECN1500

ELFN−ECN512

NEWRENO512

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600
10% Packet Loss, RTS/CTS off

Average RTT (msec)

G
oo

dp
ut

 (
K

bp
s)

RENO1500
NEWRENO1500
SACK1500
ELFN−ECN1500
RENO512
NEWRENO512
SACK512
ELFN−ECN512

ELFN−ECN

1500

512

512
SACK

RENO
NEWRENO

SACK, RENO
NEWRENO 1500

Figure 9: Goodput for loss case.

0 20 40 60 80 100 120 140
10

20

30

40

50

60

70
Energy Consumption (Total & Idealized): Burst Loss, RTS/CTS off, MTU 1500

Average RTT (msec)

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

RENO−Total
NEWRENO−Total
SACK−Total
ELFN−ECN−Total
RENO−Ideal
NEWRENO−Ideal
SACK−Ideal
ELFN−ECN−Ideal

ELFN−ECN

Total Idealized

RENO−Total

SACK−Ideal

NEWRENO−Ideal

0 20 40 60 80 100 120 140
200

400

600

800

1000

1200

1400
Goodput: Burst Loss, RTS/CTS, MTU 1500

Average RTT (msec)

G
oo

dp
ut

 (
kb

ps
)

RENO
NEWRENO
SACK
ELFN−ECN

SACK

Figure 10: Energy and goodput for bursty losses.

th
0 2 4 6 8 10 12 14

0

50

100

150

200

250

300

350

400

450

500

Idealized Energy Consumption : Congestion, MTU 1500, RTS/CTS off

Packet Loss %

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

TCP−ECN−ELFN 15msec RTT
TCP−SACK 15msec RTT
TCP−ECN−ELFN 130msec RTT
TCP−SACK 130msec RTT

TCP−ECN−ELFN with RTT 15 msec

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

450

500

Awake Energy Consumption : Congestion, MTU 1500, RTS/CTS off

Packet Loss %

E
ne

rg
y

(J
ou

le
s*

e−
6/

B
it)

TCP−ECN−ELFN 15msec RTT
TCP−SACK 15msec RTT
TCP−ECN−ELFN 130msec RTT
TCP−SACK 130msec RTT

TCP−ECN−ELFN

Figure 11: Idealized and awake energy for the con-
gestion case.

